Control design for first-order processes: shaping the probability density of the process state

[1]  M. S. Bartlett,et al.  Non-linear transformations of stochastic processes , 1966, The Mathematical Gazette.

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[4]  An-Chen Lee,et al.  Minimum-variance controller for a class of non-linear systems , 1990 .

[5]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[6]  P. R. Latour Quantify quality control's intangible benefits , 1992 .

[7]  T. Harris Optimal controllers for nonsymmetric and nonquadratic loss functions , 1992 .

[8]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[9]  P. R. Latour Process control : CLIFFTENT shows it's more profitable than expected : Management guidelines : A special report , 1996 .

[10]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[11]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[12]  Hong Wang,et al.  Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability , 1999, IEEE Trans. Autom. Control..

[13]  Hong Wang,et al.  Bounded Dynamic Stochastic Distributions Modelling and Control , 2000 .

[14]  Jianhua Zhang,et al.  Bounded stochastic distributions control for pseudo-ARMAX stochastic systems , 2001, IEEE Trans. Autom. Control..

[15]  Hong Wang Minimum entropy control of non-Gaussian dynamic stochastic systems , 2002, IEEE Trans. Autom. Control..