c ○ World Scientific Publishing Company AN ALGEBRAIC TOPOLOGICAL METHOD FOR FEATURE IDENTIFICATION

We develop a mathematical framework for describing local features of a geometric object—such as the edges of a square or the apex of a cone—in terms of algebraic topological invariants. The main tool is the construction of a "tangent complex" for an arbitrary geometrical object, generalising the usual tangent bundle of a manifold. This framework can be used to develop algorithms for automatic feature location. We give several examples of applying such algorithms to geometric objects represented by point-cloud data sets.

[1]  Joachim Giesen,et al.  Shape dimension and intrinsic metric from samples of manifolds with high co-dimension , 2003, SCG '03.

[2]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[4]  R. Ho Algebraic Topology , 2022 .

[5]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[6]  Tamal K. Dey,et al.  Shape Segmentation and Matching from Noisy Point Clouds , 2004, PBG.

[7]  Herbert Edelsbrunner,et al.  Shape Reconstruction with Delaunay Complex , 1998, LATIN.

[8]  W. A. Sutherland ALGEBRAIC TOPOLOGY: A First Course (Mathematics Lecture Notes Series, 58) , 1983 .

[9]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[10]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[11]  Tamal K. Dey,et al.  Shape Dimension and Approximation from Samples , 2002, SODA '02.

[12]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[13]  H. Fédérer Geometric Measure Theory , 1969 .

[14]  I. Jolliffe Principal Component Analysis , 2002 .

[15]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[16]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[17]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  T. Fan Describing and Recognizing 3-D Objects Using Surface Properties , 1989, Springer Series in Perception Engineering.

[19]  Robert B. Fisher From Surfaces to Objects: Computer Vision and Three Dimensional Scene Analysis , 1989 .