Repairing Reed-Solomon Codes via Subspace Polynomials

We propose new repair schemes for Reed-Solomon codes that use subspace polynomials and hence generalize previous works in the literature that employ trace polynomials. The Reed-Solomon codes are over $\mathbb{F}_{q^\ell}$ and have redundancy $r = n-k \geq q^m$, $1\leq m\leq \ell$, where $n$ and $k$ are the code length and dimension, respectively. In particular, for one erasure, we show that our schemes can achieve optimal repair bandwidths whenever $n=q^\ell$ and $r = q^m,$ for all $1 \leq m \leq \ell$. For two erasures, our schemes use the same bandwidth per erasure as the single erasure schemes, for $\ell/m$ is a power of $q$, and for $\ell=q^a$, $m=q^b-1>1$ ($a \geq b \geq 1$), and for $m\geq \ell/2$ when $\ell$ is even and $q$ is a power of two.

[1]  Hamid Jafarkhani,et al.  A tradeoff between the sub-packetization size and the repair bandwidth for reed-solomon code , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[2]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[3]  Alexander Vardy,et al.  Improved schemes for asymptotically optimal repair of MDS codes , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Alexander Barg,et al.  Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[5]  Hoang Dau,et al.  Low bandwidth repair of the RS(10,4) Reed-Solomon code , 2017, 2017 Information Theory and Applications Workshop (ITA).

[6]  Han Mao Kiah,et al.  Repairing reed-solomon codes with two erasures , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[7]  Emanuele Viterbo,et al.  Repair Schemes with Optimal I/O Costs for Full-Length Reed-Solomon Codes with Two Parities , 2018, 2018 IEEE Information Theory Workshop (ITW).

[8]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[9]  Zhifang Zhang,et al.  An Improved Cooperative Repair Scheme for Reed-Solomon Codes , 2019, 2019 19th International Symposium on Communications and Information Technologies (ISCIT).

[10]  Dimitris S. Papailiopoulos,et al.  XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..

[11]  Dimitris S. Papailiopoulos,et al.  A repair framework for scalar MDS codes , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[12]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[13]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[14]  Cory Hill,et al.  f4: Facebook's Warm BLOB Storage System , 2014, OSDI.

[15]  Itzhak Tamo,et al.  Optimal Repair of Reed-Solomon Codes: Achieving the Cut-Set Bound , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Hamid Jafarkhani,et al.  On the Sub-Packetization Size and the Repair Bandwidth of Reed-Solomon Codes , 2018, IEEE Transactions on Information Theory.

[17]  Itzhak Tamo,et al.  The Repair Problem for Reed–Solomon Codes: Optimal Repair of Single and Multiple Erasures With Almost Optimal Node Size , 2019, IEEE Transactions on Information Theory.

[18]  Hoang Dau,et al.  On the I/O Costs of Some Repair Schemes for Full-Length Reed-Solomon Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[19]  Venkatesan Guruswami,et al.  Repairing Reed-Solomon Codes , 2015, IEEE Transactions on Information Theory.

[20]  Mary Wootters,et al.  Repairing multiple failures for scalar MDS codes , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[22]  Han Mao Kiah,et al.  Repairing Reed-Solomon Codes With Multiple Erasures , 2016, IEEE Transactions on Information Theory.

[23]  Hamid Jafarkhani,et al.  On the I/O Costs in Repairing Short-Length Reed-Solomon Codes , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[24]  Lucas Reis Nilpotent linearized polynomials over finite fields and applications , 2018, Finite Fields Their Appl..

[25]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[26]  Alexander Barg,et al.  Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth , 2016, IEEE Transactions on Information Theory.