Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension

For several computational problems in homotopy theory, we obtain algorithms with running time polynomial in the input size. In particular, for every fixed $k\ge 2$, there is a polynomial-time algorithm that, for a $1$-connected topological space $X$ given as a finite simplicial complex, or more generally, as a simplicial set with polynomial-time homology, computes the $k$th homotopy group $\pi_k(X)$, as well as the first $k$ stages of a Postnikov system of $X$. Combined with results of an earlier paper, this yields a polynomial-time computation of $[X,Y]$, i.e., all homotopy classes of continuous mappings $X\to Y$, under the assumption that $Y$ is $(k-1)$-connected and $\dim X\le 2k-2$. We also obtain a polynomial-time solution of the extension problem, where the input consists of finite simplicial complexes $X$, $Y$, where $Y$ is $(k-1)$-connected and $\dim X\le 2k-1$, plus a subspace $A\subseteq X$ and a (simplicial) map $f:A\to Y$, and the question is the extendability of $f$ to all of $X$. The algorit...

[1]  Francis Sergeraert,et al.  Constructive algebraic topology , 1999, SIGS.

[2]  Francis Sergeraert,et al.  Algebraic models for homotopy types , 2003, math/0311509.

[3]  Pedro Real An algorithm computing homotopy groups , 1996 .

[4]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[5]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[6]  Stanley O. Kochman,et al.  Stable Homotopy Groups of Spheres: A Computer-Assisted Approach , 1990 .

[7]  Larry A. Lambe,et al.  A fixed point approach to homological perturbation theory , 1991 .

[8]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[9]  Jirí Matousek,et al.  Extendability of Continuous Maps Is Undecidable , 2013, Discret. Comput. Geom..

[10]  Lukás Vokrínek Computing the abelian heap of unpointed stable homotopy classes of maps , 2013, ArXiv.

[11]  Francis Sergeraert,et al.  The Computability Problem in Algebraic Topology , 1994 .

[12]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[13]  Greg Friedman,et al.  An elementary illustrated introduction to simplicial sets , 2008, 0809.4221.

[14]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[15]  Weishu Shih,et al.  Homologie des espaces fibrés , 1962 .

[16]  Luk'avs Vokvr'inek Constructing homotopy equivalences of chain complexes of free ZG-modules , 2013 .

[17]  Edward B Curtis,et al.  Simplicial homotopy theory , 1968 .

[18]  Ana Romero,et al.  Effective homotopy of fibrations , 2012, Applicable Algebra in Engineering, Communication and Computing.

[19]  Ana Romero,et al.  Interoperating between computer algebra systems: computing homology of groups with kenzo and GAP , 2009, ISSAC '09.

[20]  Stanley O. Kochman,et al.  Stable Homotopy Groups of Spheres: A Computer-Assisted Approach , 1990 .

[21]  Edgar H. Brown,et al.  Twisted Tensor Products, I , 1959 .

[22]  Jirí Matousek,et al.  Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces , 2012, Found. Comput. Math..

[23]  Julio Rubio,et al.  Constructive Homological Algebra and Applications , 2012, 1208.3816.

[24]  Dmitry N. Kozlov,et al.  Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes , 2005 .

[25]  Justin R. Smith m-structures determine integral homotopy type , 1998 .

[26]  Rolf Schön,et al.  Effective Algebraic Topology , 1991 .

[27]  Francis Sergeraert,et al.  Introduction to Combinatorial Homotopy Theory , 2008 .

[28]  N. Steenrod,et al.  Cohomology operations, and obstructions to extending continuous functions : colloquium lectures, August 1957 , 1972 .

[29]  Eduardo Sáenz-de-Cabezón,et al.  Complexity and algorithms for Euler characteristic of simplicial complexes , 2013, J. Symb. Comput..

[30]  J. Manning,et al.  Algorithmic detection and description of hyperbolic structures on closed 3{manifolds with solvable word problem , 2002 .

[31]  Marek Krčál Computational Homotopy Theory , 2013 .

[32]  Pedro Real,et al.  Homological perturbation theory and associativity , 2000 .

[33]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[34]  Marek Filakovsk'y Effective chain complexes for twisted products , 2012 .

[35]  Rocío González-Díaz,et al.  Simplification techniques for maps in simplicial topology , 2005, J. Symb. Comput..

[36]  E. Dyer,et al.  Homology of Iterated Loop Spaces , 1962 .

[37]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[38]  Padal Nihar Chromatic Numbers , 2011 .

[39]  中村 得之,et al.  Cohomology Operations , 2019, The Norm Residue Theorem in Motivic Cohomology.

[40]  Víctor Álvarez,et al.  Algebra Structures on the Comparison of the Reduced Bar Construction and the Reduced W-Construction , 2009 .

[41]  Luk'avs Vokvr'inek,et al.  Decidability of the extension problem for maps into odd-dimensional spheres , 2014, 1401.3758.

[42]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[43]  Peter Franek,et al.  Robust Satisfiability of Systems of Equations , 2014, SODA.

[44]  R. Ho Algebraic Topology , 2022 .

[45]  Ana Romero,et al.  Computing spectral sequences , 2006, J. Symb. Comput..

[46]  D. Ravenel Complex Cobordism and Stable Homotopy Groups of Spheres , 1986 .

[47]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[48]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[49]  M. Dehn Transformation der Kurven auf zweiseitigen Flächen , 1912 .

[50]  Vladimir A. Smirnov,et al.  The homology of iterated loop spaces , 2000 .

[51]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[52]  Jirí Matousek Computing higher homotopy groups is W[1]-hard , 2013, ArXiv.