Novel laser crystals in Ca9Y(VO4)7-x(PO4)x mixed system
暂无分享,去创建一个
S. Stefanovich | A. Mosunov | D. Spassky | S. Aksenov | A. N. Shekhovtsov | M. Kosmyna | P. Mateychenko | B. P. Nazarenko
[1] D. Ksenofontov,et al. Crystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4, R = Nd, Sm–Er, Y , 2015 .
[2] Lizhen Zhang,et al. Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7 crystal , 2014 .
[3] B. Choi,et al. Tunable white-light emission in single-phase Ca 9 Gd(VO 4 ) 7 :Tm 3+ , Eu 3+ , 2014 .
[4] D. A. Spassky,et al. The features of energy transfer to the emission centers in ZnWO4 and ZnWO4:Mo , 2013 .
[5] Yanyan Ding,et al. Electronic structure and photoluminescence properties of yellow-emitting Ca10Na(PO4)7: Eu2+ phosphor for white light-emitting diodes , 2013 .
[6] V. Puzikov,et al. Development of Growth Technologies for the Photonic Single Crystals by the Czochralski Method at Institute for Single Crystals, NAS of Ukraine , 2013 .
[7] Lizhen Zhang,et al. Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7 , 2013 .
[8] Olga V. Dimitrova,et al. New nonlinear optical potassium iodate K[IO3] and borates K3[B6O10]Br, KTa[B4O6(OH)4](OH)2·1.33H2O—Synthesis, structures and relation to the properties , 2012 .
[9] B. Viana,et al. Site occupancy and mechanisms of thermally stimulated luminescence in Ca9Ln(PO4)7 (Ln = lanthanide) , 2012 .
[10] W. Paszkowicz,et al. Growth and characterization of pure and Yb-doped Ca9Y(VO4)7 single crystals , 2012, 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE).
[11] Xiaoling Hu,et al. Growth and spectral properties of self-frequency doubling crystal, Nd:Ca9.03Na1.08La0.62(VO4)7 , 2007 .
[12] Gervais Chapuis,et al. SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .
[13] H. Seo,et al. Host sensitization ofGd3+ions in yttrium and scandium borates and phosphates: Application to quantum cutting , 2006 .
[14] V. Morozov,et al. Dielectric and Nonlinear Optical Properties of the Ca 9 R(PO 4 ) 7 (R = Ln) Phosphates , 2005 .
[15] S. Stefanovich,et al. Ferroelectric–Ionic Conductor Phase Transitions in Optical Nonlinear Ca9R(VO4)7 Vanadates , 2002 .
[16] John S. O. Evans,et al. Synthesis and structure of ACa9(VO4)7 compounds, A = Bi or a rare earth , 2001 .
[17] S. V. Lavrishchev,et al. Periodic domain structure in Czochralski-grown LiNbO3: Y crystals , 2000 .
[18] A. Belik,et al. Crystal structure of double vanadates Ca9R(VO4)7. II. R = Tb, Dy, Ho, and Y , 2000 .
[19] S. Stefanovich. Second harmonic in reflection in material science of ferroelectrics , 1994, Conference on Lasers and Electro-Optics Europe.
[20] S. Haussühl,et al. Elastic, thermoelastic, piezoelectric, linear electrooptic, dielectric, and pyroelectric properties of trigonal Ca3(VO4)2single crystals , 1978 .
[21] G. Blasse,et al. The nature of the electronic transitions of the vanadate group , 1978 .
[22] A. Glass,et al. Calcium orthovanadate, Ca3(VO4)2-a new high-temperature ferroelectric , 1977 .
[23] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[24] C. Calvo,et al. The Crystal Structure of Whitlockite from the Palermo Quarry , 1975 .
[25] S. K. Kurtz,et al. A powder technique for the evaluation of nonlinear optical materials , 1968 .
[26] G. D. Rieck,et al. International tables for X-ray crystallography , 1962 .