Novel laser crystals in Ca9Y(VO4)7-x(PO4)x mixed system

[1]  D. Ksenofontov,et al.  Crystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4, R = Nd, Sm–Er, Y , 2015 .

[2]  Lizhen Zhang,et al.  Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7 crystal , 2014 .

[3]  B. Choi,et al.  Tunable white-light emission in single-phase Ca 9 Gd(VO 4 ) 7 :Tm 3+ , Eu 3+ , 2014 .

[4]  D. A. Spassky,et al.  The features of energy transfer to the emission centers in ZnWO4 and ZnWO4:Mo , 2013 .

[5]  Yanyan Ding,et al.  Electronic structure and photoluminescence properties of yellow-emitting Ca10Na(PO4)7: Eu2+ phosphor for white light-emitting diodes , 2013 .

[6]  V. Puzikov,et al.  Development of Growth Technologies for the Photonic Single Crystals by the Czochralski Method at Institute for Single Crystals, NAS of Ukraine , 2013 .

[7]  Lizhen Zhang,et al.  Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7 , 2013 .

[8]  Olga V. Dimitrova,et al.  New nonlinear optical potassium iodate K[IO3] and borates K3[B6O10]Br, KTa[B4O6(OH)4](OH)2·1.33H2O—Synthesis, structures and relation to the properties , 2012 .

[9]  B. Viana,et al.  Site occupancy and mechanisms of thermally stimulated luminescence in Ca9Ln(PO4)7 (Ln = lanthanide) , 2012 .

[10]  W. Paszkowicz,et al.  Growth and characterization of pure and Yb-doped Ca9Y(VO4)7 single crystals , 2012, 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE).

[11]  Xiaoling Hu,et al.  Growth and spectral properties of self-frequency doubling crystal, Nd:Ca9.03Na1.08La0.62(VO4)7 , 2007 .

[12]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[13]  H. Seo,et al.  Host sensitization ofGd3+ions in yttrium and scandium borates and phosphates: Application to quantum cutting , 2006 .

[14]  V. Morozov,et al.  Dielectric and Nonlinear Optical Properties of the Ca 9 R(PO 4 ) 7 (R = Ln) Phosphates , 2005 .

[15]  S. Stefanovich,et al.  Ferroelectric–Ionic Conductor Phase Transitions in Optical Nonlinear Ca9R(VO4)7 Vanadates , 2002 .

[16]  John S. O. Evans,et al.  Synthesis and structure of ACa9(VO4)7 compounds, A = Bi or a rare earth , 2001 .

[17]  S. V. Lavrishchev,et al.  Periodic domain structure in Czochralski-grown LiNbO3: Y crystals , 2000 .

[18]  A. Belik,et al.  Crystal structure of double vanadates Ca9R(VO4)7. II. R = Tb, Dy, Ho, and Y , 2000 .

[19]  S. Stefanovich Second harmonic in reflection in material science of ferroelectrics , 1994, Conference on Lasers and Electro-Optics Europe.

[20]  S. Haussühl,et al.  Elastic, thermoelastic, piezoelectric, linear electrooptic, dielectric, and pyroelectric properties of trigonal Ca3(VO4)2single crystals , 1978 .

[21]  G. Blasse,et al.  The nature of the electronic transitions of the vanadate group , 1978 .

[22]  A. Glass,et al.  Calcium orthovanadate, Ca3(VO4)2-a new high-temperature ferroelectric , 1977 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  C. Calvo,et al.  The Crystal Structure of Whitlockite from the Palermo Quarry , 1975 .

[25]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[26]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .