Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons

Chandelier cells form inhibitory axo-axonic synapses on pyramidal neurons with their characteristic candlestick-like axonal terminals. The functional role of chandelier cells is still unclear, although the preferential loss of this cell type at epileptic loci suggests a role in epilepsy. Here we report an examination of whisker- and spontaneous activity-evoked responses in chandelier cells and other fast-spiking nonpyramidal neurons and regular-spiking pyramidal neurons in layer 2/3 of the barrel cortex. Fast-spiking nonpyramidal neurons, including chandelier cells, basket cells, neurogliaform cells, double bouquet cells, net basket cells, bitufted cells, and regular-spiking pyramidal neurons all respond to stimulation of multiple whiskers on the contralateral face. Whisker stimulation, however, evokes small, delayed EPSPs preceded by an earlier IPSP and no action potentials in chandelier cells, different from other nonpyramidal and pyramidal neurons. In addition, chandelier cells display a larger receptive field with lower acuity than other fast-spiking nonpyramidal neurons and pyramidal neurons. Notably, simultaneous dual whole-cell in vivo recordings show that chandelier cells, which rarely fire action potentials spontaneously, fire more robustly than other types of cortical neurons when the overall cortical excitation increases. Thus, chandelier cells may not process fast ascending sensory information but instead may be reserved to prevent excessive excitatory activity in neuronal networks.

[1]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[2]  R. S. Williams,et al.  The cellular pathology of neuronal ceroid-lipofuscinosis. A golgi-electronmicroscopic study. , 1977, Archives of neurology.

[3]  O. Creutzfeldt,et al.  Extracellular and intracellular recordings from cat's cortical whisker projection area: thalamocortical response transformation. , 1977, Journal of neurophysiology.

[4]  R. Dykes,et al.  Somatotopic projections of mystacial vibrissae on cerebral cortex of cats. , 1977, Journal of neurophysiology.

[5]  R K Wong,et al.  Dendritic mechanisms underlying penicillin-induced epileptiform activity. , 1979, Science.

[6]  D. Simons Multi-whisker stimulation and its effects on vibrissa units in rat Sml barrel cortex , 1983, Brain Research.

[7]  P. Somogyi,et al.  A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells , 1983, Brain Research.

[8]  B. Connors Initiation of synchronized neuronal bursting in neocortex , 1984, Nature.

[9]  J. Chapin,et al.  Mapping the body representation in the SI cortex of anesthetized and awake rats , 1984, The Journal of comparative neurology.

[10]  C. Ribak,et al.  Axon terminals of GABAergic chandelier cells are lost at epileptic foci , 1985, Brain Research.

[11]  B. Connors,et al.  Mechanisms of interictal epileptogenesis. , 1986, Advances in neurology.

[12]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[13]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[14]  D. Simons,et al.  Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae , 1988, Brain Research.

[15]  G. Buzsáki,et al.  Alterations in excitatory and gabaergic inhibitory connections in hippocampal transplants , 1988, Neuroscience.

[16]  B. Connors,et al.  Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  M. Ito Simultaneous visualization of cortical barrels and horseradish peroxidase‐injected layer 5b vibrissa neurones in the rat. , 1992, The Journal of physiology.

[18]  D. Paré,et al.  Various types of inhibitory postsynaptic potentials in anterior thalamic cells are differentially altered by stimulation of laterodorsal tegmental cholinergic nucleus , 1992, Neuroscience.

[19]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[20]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[22]  R G Sola,et al.  Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study. , 1996, Brain : a journal of neurology.

[23]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[24]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[25]  A. Keller,et al.  Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex , 1997, Experimental Brain Research.

[26]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[27]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[28]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[29]  J J Zhu,et al.  Control of recurrent inhibition of the lateral posterior-pulvinar complex by afferents from the deep layers of the superior colliculus of the rabbit. , 1998, Journal of neurophysiology.

[30]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[31]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[32]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[33]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[34]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[35]  D. Prince,et al.  Epileptogenic neurons and circuits. , 1999, Advances in neurology.

[36]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[37]  D J Simons,et al.  Functional independence of layer IV barrels in rodent somatosensory cortex. , 1999, Journal of neurophysiology.

[38]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[39]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[40]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  F. Ebner,et al.  Direct inhibition evoked by whisker stimulation in somatic sensory (SI) barrel field cortex of the awake rat. , 2000, Journal of neurophysiology.

[42]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[43]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[44]  S. Sherman,et al.  Control of Dendritic Outputs of Inhibitory Interneurons in the Lateral Geniculate Nucleus , 2000, Neuron.

[45]  P Heggelund,et al.  Muscarinic Regulation of Dendritic and Axonal Outputs of Rat Thalamic Interneurons: A New Cellular Mechanism for Uncoupling Distal Dendrites , 2001, The Journal of Neuroscience.

[46]  B. Sakmann,et al.  Back‐propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex , 2001, The Journal of physiology.

[47]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[48]  Nathaniel N. Urban,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb , 2001 .

[49]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[50]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.

[51]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[52]  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[53]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[54]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[55]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[56]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[57]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[58]  P. Heggelund,et al.  Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms , 2003, The Journal of physiology.

[59]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[60]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[61]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Kevin Fox,et al.  The Origin of Cortical Surround Receptive Fields Studied in the Barrel Cortex , 2003, The Journal of Neuroscience.

[63]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[64]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[65]  P. Somogyi,et al.  Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus , 2004, Experimental Brain Research.

[66]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[67]  R G Sola,et al.  Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. , 2004, Brain : a journal of neurology.

[68]  J. Zhu,et al.  Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the Neocortex , 2004, The Journal of Neuroscience.