Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex

Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into data-driven, biologically realistic models of the mouse primary visual cortex. The models were constructed at two levels of granularity, using either biophysically-detailed or point-neuron models, with identical network connectivity. Both models were compared to each other and to experimental recordings of neural activity during presentation of visual stimuli to awake mice. Three specific predictions emerge from model construction and simulations: about connectivity between excitatory and parvalbumin-negative inhibitory neurons, functional specialization of connections between excitatory neurons, and the impact of the cortical retinotopic map on structure-function relationships. Finally, despite their vastly different neuronal levels of granularity, both models perform similarly at the level of firing rate distributions. All data and models are freely available as a resource for the community.

[1]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[2]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[3]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[4]  M. Scanziani,et al.  Tuned Thalamic Excitation is Amplified by Visual Cortical Circuits , 2013, Nature Neuroscience.

[5]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[6]  Hui Chen,et al.  Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[7]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[8]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[9]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[10]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[11]  Yazan N. Billeh,et al.  Widespread presence of direction-reversing neurons in the mouse visual system , 2019, bioRxiv.

[12]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[13]  M. Scanziani,et al.  Cortical direction selectivity emerges at convergence of thalamic synapses , 2018, Nature.

[14]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[15]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[16]  Idan Segev,et al.  Methods in neuronal modeling: From synapses to networks , 1989 .

[17]  Markus Diesmann,et al.  Multi-scale account of the network structure of macaque visual cortex , 2017, Brain Structure and Function.

[18]  A. Reyes,et al.  Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[19]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[20]  S. P. Brown,et al.  The development of local circuits in the neocortex: recent lessons from the mouse visual cortex , 2018, Current Opinion in Neurobiology.

[21]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[22]  Xiao-Jing Wang,et al.  Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex , 2017, Neuron.

[23]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[24]  Andrew P. Davison,et al.  A comprehensive data-driven model of cat primary visual cortex , 2018, bioRxiv.

[25]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[26]  John W. Phillips,et al.  Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex , 2018, bioRxiv.

[27]  James G. King,et al.  An algorithm to predict the connectome of neural microcircuits , 2015, Front. Comput. Neurosci..

[28]  Arno C. Schmitt,et al.  Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites , 2015, Proceedings of the National Academy of Sciences.

[29]  Christof Koch,et al.  Neurodata Without Borders: Creating a Common Data Format for Neurophysiology , 2015, Neuron.

[30]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[31]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[32]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[33]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[34]  Christof Koch,et al.  Big Science, Team Science, and Open Science for Neuroscience , 2016, Neuron.

[35]  B. Connors,et al.  Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. , 2002, Journal of neurophysiology.

[36]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[37]  M. Meister,et al.  Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli , 2013, Current Biology.

[38]  Mauricio Barahona,et al.  Emergence of Slow-Switching Assemblies in Structured Neuronal Networks , 2015, PLoS Comput. Biol..

[39]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.

[40]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[41]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[42]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[43]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[44]  Gaute T. Einevoll,et al.  LFPy – multimodal modeling of extracellular neuronal recordings in Python , 2019, bioRxiv.

[45]  Miyoung Chun,et al.  The BRAIN Initiative: Building, Strengthening, and Sustaining , 2016, Neuron.

[46]  William W. Lytton,et al.  NetPyNE, a tool for data-driven multiscale modeling of brain circuits , 2019, eLife.

[47]  K. Miller,et al.  Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning , 2001, Nature Neuroscience.

[48]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[49]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[50]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[51]  James G. King,et al.  The SONATA data format for efficient description of large-scale network models , 2019, bioRxiv.

[52]  Brian R. Lee,et al.  Classification of electrophysiological and morphological types in mouse visual cortex , 2018, bioRxiv.

[53]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[54]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[55]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[56]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[57]  Kevan A C Martin,et al.  An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse , 2017, The Journal of Neuroscience.

[58]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[59]  Jacques Bourg,et al.  Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus , 2016, Nature Neuroscience.

[60]  Christof Koch,et al.  A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex , 2018, bioRxiv.

[61]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[62]  Shay Ohayon,et al.  Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology , 2017, Journal of neural engineering.

[63]  Brian Zingg,et al.  Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. , 2016, Cerebral cortex.

[64]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[65]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[66]  Stefan Mihalas,et al.  Cortical circuits implement optimal context integration , 2017, bioRxiv.

[67]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[68]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[69]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[70]  Ian Nauhaus,et al.  Automated identification of mouse visual areas with intrinsic signal imaging , 2016, Nature Protocols.

[71]  Nicholas J. Priebe,et al.  Emergence of Orientation Selectivity in the Mammalian Visual Pathway , 2013, The Journal of Neuroscience.

[72]  Wei Zhu,et al.  A neuronal network model of primary visual cortex explains spatial frequency selectivity , 2009, Journal of Computational Neuroscience.

[73]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[74]  Tania A Seabrook,et al.  Architecture, Function, and Assembly of the Mouse Visual System. , 2017, Annual review of neuroscience.

[75]  A. Maffei,et al.  Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of Mouse Primary Visual Cortex , 2014, The Journal of Neuroscience.

[76]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[77]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[78]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[79]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[80]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[81]  Felix Schürmann,et al.  Practical Parallel Rendering of Detailed Neuron Simulations , 2013, EGPGV@Eurographics.

[82]  Stefan Mihalas,et al.  A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice , 2016, The Journal of Neuroscience.

[83]  Fuhui Long,et al.  A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas , 2019, bioRxiv.

[84]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[85]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[86]  Na Ji,et al.  Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs , 2015, Nature Neuroscience.

[87]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[88]  Wilten Nicola,et al.  Supervised learning in spiking neural networks with FORCE training , 2016, Nature Communications.

[89]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[90]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[91]  Alois Knoll,et al.  The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain , 2016, Neuron.

[92]  Sonja Grün,et al.  The Scientific Case for Brain Simulations , 2019, Neuron.

[93]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[94]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[95]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[96]  Anton V. Chizhov,et al.  Mind the last spike — firing rate models for mesoscopic populations of spiking neurons , 2019, Current Opinion in Neurobiology.

[97]  Brian R. Lee,et al.  Visual physiology of the layer 4 cortical circuit in silico , 2018, bioRxiv.

[98]  Christof Koch,et al.  Generalized leaky integrate-and-fire models classify multiple neuron types , 2017, Nature Communications.

[99]  T. Bonhoeffer,et al.  Mapping Retinotopic Structure in Mouse Visual Cortex with Optical Imaging , 2002, The Journal of Neuroscience.

[100]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[101]  T J Sejnowski,et al.  A Model for Encoding Multiple Object Motions and Self-Motion in Area MST of Primate Visual Cortex , 1998, The Journal of Neuroscience.

[102]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[103]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[104]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[105]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[106]  Tobias C. Potjans,et al.  The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model , 2012, Cerebral cortex.

[107]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[108]  Alex M Thomson,et al.  Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. , 2005, Cerebral cortex.

[109]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[110]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[111]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[112]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[113]  Balázs Rózsa,et al.  Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules , 2015, Science.

[114]  Christof Koch,et al.  BioNet: A Python interface to NEURON for modeling large-scale networks , 2018, PloS one.

[115]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[116]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[117]  Christof Koch,et al.  Systematic generation of biophysically detailed models for diverse cortical neuron types , 2018, Nature Communications.

[118]  Kenneth D. Harris,et al.  Excitatory and inhibitory intracortical circuits for orientation and direction selectivity , 2019, bioRxiv.

[119]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[120]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[121]  Randy M. Bruno,et al.  Comparative Strength and Dendritic Organization of Thalamocortical and Corticocortical Synapses onto Excitatory Layer 4 Neurons , 2014, The Journal of Neuroscience.

[122]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[123]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[124]  Petr Znamenskiy,et al.  Functional selectivity and specific connectivity of inhibitory neurons in primary visual cortex , 2018, bioRxiv.

[125]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.