The Research on Fisher-RBF Data Fusion Model of Network Security Detection

Based on the artificial neural network and means of classification, this paper puts forward the Fisher-RBF Data Fusion Model. Abandon redundant and invalid data and decrease dimensionality of feature space to attain the goal of increasing the data fusion efficiency. In the simulation, the experiment of the network intrusion detection is conducted by using KDDCUP'99_10percent data set as the data source. The result of simulation experiment shows that on a fairly large scale, Fisher-RBF model can increase detection rate and discrimination rate, and decrease missing-report rate and misstatement rate.

[1]  James Llinas,et al.  An introduction to multi-sensor data fusion , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[2]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[3]  Pramod K. Varshney Multisensor data fusion , 1997 .

[4]  Wang Yao Multisensor Information Fusion and Its Application:A Survey , 2001 .

[5]  Kumpati S. Narendra,et al.  Neural networks in control systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[6]  Peter de B. Harrington,et al.  Self-Configuring Radial Basis Function Neural Networks for Chemical Pattern Recognition , 1999, J. Chem. Inf. Comput. Sci..

[7]  Yücel Saygin,et al.  Privacy preserving clustering on horizontally partitioned data , 2007, Data Knowl. Eng..

[8]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[9]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[10]  Pietro Perona,et al.  Combining generative models and Fisher kernels for object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  M. Nasipuri,et al.  Self-adaptive RBF neural network-based segmentation of medical images of the brain , 2005, Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005..

[12]  RossetSaharon,et al.  KDD-cup 99 , 2000 .

[13]  Gao Xiang Survey of Multisensor Information Fusion , 2002 .