Organolead Halide Perovskite: New Horizons in Solar Cell Research

Organolead-halide-perovskite-based solar cells have recently received significant attention due to their excellent photovoltaic performance and low cost. The general formula of this perovskite light harvester is RPbX3, where R and X stand for a monovalent organic cation and halide anion, respectively. Structures of the perovskite solar cell are designed based on the function of the perovskite. Organolead halide perovskites can be used either as sensitizers or n- or p-type light harvesters. Rapid progress has been made over the past year since the first report on long-term, durable, 9.7% efficiency perovskite solar cells based on CH3NH3PbI3-sensitized TiO2 in 2012. As a result, power conversion efficiencies as high as 16% have been achieved. Further improvement is expected from this material in terms of understanding charge accumulation and transport properties. Organolead halide perovskite is now regarded as a promising solar cell material, opening new horizons in solar cell research.

[1]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[2]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[3]  M. Grätzel Dye-sensitized solar cells , 2003 .

[4]  H. Boughzala,et al.  Synthesis, structural and optical properties of a novel bilayered organic–inorganic perovskite C5Pb2I5 , 2010 .

[5]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[6]  M. Zhu,et al.  Prediction of lattice constant in cubic perovskites , 2006 .

[7]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[8]  Mohammad Khaja Nazeeruddin,et al.  Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells , 2013 .

[9]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[10]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[11]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[12]  Peng Wang,et al.  An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. , 2011, Nano letters.

[13]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[14]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[15]  Stanislaus S. Wong,et al.  Green Synthesis and Property Characterization of Single‐Crystalline Perovskite Fluoride Nanorods , 2008 .

[16]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[17]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[18]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[19]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[20]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[21]  Brian A. Gregg,et al.  Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation , 2003 .

[22]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[23]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[24]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[25]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[26]  Yi-bing Cheng,et al.  Solid-state Ru-dye solar cells using polypyrrole as a hole conductor , 2004 .

[27]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[28]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[29]  S. Maensiri,et al.  Structure and optical properties of CeO , 2014 .

[30]  G. Papavassiliou,et al.  Three- and low-dimensional inorganic semiconductors , 1997 .

[31]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[32]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[33]  H. Mizuseki,et al.  Proposed design principle of fluoride-based materials for deep ultraviolet light emitting devices , 2007 .

[34]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[35]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[36]  H. Snaith,et al.  Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3‐Hexylthiophene)‐Based Solid‐State Dye‐Sensitized Solar Cells , 2011 .

[37]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[38]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[39]  C. Marcel,et al.  Solid-State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dye-Sensitized Nanobrookite and Nanoanatase TiO2 Electrodes , 2008 .

[40]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[41]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[42]  Bin Liu,et al.  Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye , 2009 .

[43]  N. S. Sariciftci,et al.  Characterization of N, N′-bis-2-(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors , 2005 .

[44]  H. Ohkita,et al.  Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules , 2007 .

[45]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[46]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[47]  Michael Grätzel,et al.  Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 ' -dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II) , 2002 .

[48]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[49]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[50]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[51]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[52]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[53]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[54]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[55]  V. Gionis,et al.  Preparation, structure and optical properties of [CH3SC(NH2)NH2]3PbI5, [CH3SC(NH2)NH2]4Pb2Br8and [CH3SC(NH2)NH2]3PbCl5·CH3SC(NH2)NH2Cl , 1998 .

[56]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[57]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[58]  V. Goldschmidt Krystallbau und chemische Zusammensetzung , 1927 .

[59]  Choong-Sun Lim,et al.  Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. , 2012, Nano letters.

[60]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[61]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[62]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[63]  David B. Mitzi,et al.  Synthesis and Characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single .ltbbrac.110.rtbbrac. Perovskite Sheets , 1995 .

[64]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[65]  Jin Zhai,et al.  Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells , 2004 .

[66]  Michael Grätzel,et al.  Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye , 2005 .

[67]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.

[68]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[69]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[70]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[71]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[72]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .

[73]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[74]  Erik M. J. Johansson,et al.  Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When Adding Li-TFSI , 2012 .

[75]  G. Papavassiliou,et al.  Some new organic-inorganic hybrid semiconductors based on metal halide units: Structural, optical and related properties , 1999 .

[76]  M. Grätzel,et al.  Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. , 2011, Nano letters.

[77]  N. Davidson,et al.  Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations , 1992, The Journal of general physiology.

[78]  N. Park,et al.  Effect of Overlayer Thickness of Hole Transport Material on Photovoltaic Performance in Solid-Sate Dye-Sensitized Solar Cell , 2012 .

[79]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[80]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[81]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[82]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[83]  Mingfei Xu,et al.  Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. , 2010, Small.

[84]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[85]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[86]  E. Gabe The crystal structure of methylammonium bromide , 1961 .

[87]  G. Vitiello,et al.  Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. , 2013, Journal of the American Chemical Society.

[88]  P. Kollman,et al.  Monte Carlo simulation studies of the solvation of ions. 1. Acetate anion and methylammonium cation , 1986 .

[89]  Hidetoshi Miura,et al.  Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells , 2005 .