Polynomial-based graph convolutional neural networks for graph classification

[1]  Shuiwang Ji,et al.  Towards Deeper Graph Neural Networks , 2020, KDD.

[2]  Davide Eynard,et al.  SIGN: Scalable Inception Graph Neural Networks , 2020, ArXiv.

[3]  A. Micheli,et al.  A Fair Comparison of Graph Neural Networks for Graph Classification , 2019, ICLR.

[4]  Doina Precup,et al.  Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks , 2019, NeurIPS.

[5]  Yizhou Sun,et al.  Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification , 2019, ArXiv.

[6]  A. Galstyan,et al.  MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing , 2019, ICML.

[7]  Jan Eric Lenssen,et al.  Fast Graph Representation Learning with PyTorch Geometric , 2019, ArXiv.

[8]  Kilian Q. Weinberger,et al.  Simplifying Graph Convolutional Networks , 2019, ICML.

[9]  Zhizhen Zhao,et al.  LanczosNet: Multi-Scale Deep Graph Convolutional Networks , 2019, ICLR.

[10]  Alessandro Sperduti,et al.  On Filter Size in Graph Convolutional Networks , 2018, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

[11]  Martin Grohe,et al.  Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks , 2018, AAAI.

[12]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[13]  Stephan Günnemann,et al.  Predict then Propagate: Graph Neural Networks meet Personalized PageRank , 2018, ICLR.

[14]  Jure Leskovec,et al.  Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.

[15]  Ken-ichi Kawarabayashi,et al.  Representation Learning on Graphs with Jumping Knowledge Networks , 2018, ICML.

[16]  Yixin Chen,et al.  An End-to-End Deep Learning Architecture for Graph Classification , 2018, AAAI.

[17]  Xiao-Ming Wu,et al.  Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning , 2018, AAAI.

[18]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[19]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[20]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[21]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[22]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[23]  Donald F. Towsley,et al.  Diffusion-Convolutional Neural Networks , 2015, NIPS.

[24]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.

[25]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[28]  Alessio Micheli,et al.  Neural Network for Graphs: A Contextual Constructive Approach , 2009, IEEE Transactions on Neural Networks.

[29]  George Karypis,et al.  Comparison of descriptor spaces for chemical compound retrieval and classification , 2006, Sixth International Conference on Data Mining (ICDM'06).

[30]  P. Dobson,et al.  Distinguishing enzyme structures from non-enzymes without alignments. , 2003, Journal of molecular biology.

[31]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[32]  Alessandro Sperduti,et al.  Learning Kernel-Based Embeddings in Graph Neural Networks , 2020, ECAI.

[33]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[34]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[35]  Ashwin Srinivasan,et al.  The Predictive Toxicology Challenge 2000-2001 , 2001, Bioinform..