Polyhedra related to a lattice

Without using the l.p. duality theorem, we give a new and direct proof that Hoffman's lattice polyhedra, polyhedra from problems of Edmonds and Giles, and others, are integer. These polyhedra are intersections of more simple polyhedra such that every vertex of the initial polyhedron is a vertex of some simple polyhedron. In many cases encountered in combinatorics the simple polyhedra have a totally unimodular constraint matrix. This implies that all vertices of the initial polyhedron are integral. The proof is based on a theorem on submodular functions, which was not known earlier. The method of this paper can be applied to the consideration of the matching polyhedron.