Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies

[1]  C. Shields,et al.  Contribution of Atmospheric Rivers to Antarctic Precipitation , 2022, Geophysical research letters.

[2]  T. Fichefet,et al.  The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting , 2022, Communications Earth & Environment.

[3]  J. Box,et al.  Greenland Ice Sheet Rainfall, Heat and Albedo Feedback Impacts From the Mid‐August 2021 Atmospheric River , 2022, Geophysical Research Letters.

[4]  X. Fettweis,et al.  Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula , 2022, Communications Earth & Environment.

[5]  A. Jenkins,et al.  Simulated Twentieth‐Century Ocean Warming in the Amundsen Sea, West Antarctica , 2022, Geophysical Research Letters.

[6]  L. Dini,et al.  Rapid glacier retreat rates observed in West Antarctica , 2022, Nature Geoscience.

[7]  I. Sasgen,et al.  Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry , 2021, Frontiers in Earth Science.

[8]  J. Gregory,et al.  The Antarctic contribution to 21st century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet , 2021, The Cryosphere.

[9]  T. O'Kane,et al.  Linking the atmospheric Pacific-South American mode with oceanic variability and predictability , 2021, Communications Earth & Environment.

[10]  R. Forsberg,et al.  Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation , 2021, The Cryosphere.

[11]  J. Lenaerts,et al.  Large‐Scale Atmospheric Drivers of Snowfall Over Thwaites Glacier, Antarctica , 2021 .

[12]  D. Holland,et al.  Atmospheric Rivers, Warm Air Intrusions, and Surface Radiation Balance in the Amundsen Sea Embayment , 2021, Journal of Geophysical Research: Atmospheres.

[13]  B. Smith,et al.  Ice-shelf retreat drives recent Pine Island Glacier speedup , 2021, Science Advances.

[14]  Yuanjian Yang,et al.  Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño-Southern Oscillation , 2021 .

[15]  Francis Codron,et al.  Antarctic Atmospheric River Climatology and Precipitation Impacts , 2021, Journal of Geophysical Research: Atmospheres.

[16]  H. Fricker,et al.  Atmospheric River Precipitation Contributed to Rapid Increases in Surface Height of the West Antarctic Ice Sheet in 2019 , 2021, Geophysical Research Letters.

[17]  H. Goosse,et al.  Reconstructing atmospheric circulation and sea-ice extent in the West Antarctic over the past 200 years using data assimilation , 2021, Climate Dynamics.

[18]  T. Nagler,et al.  Widespread increase in dynamic imbalance in the Getz region of Antarctica from 1994 to 2018 , 2021, Nature Communications.

[19]  R. Reese,et al.  Drivers of Pine Island Glacier speed-up between 1996 and 2016 , 2021, The Cryosphere.

[20]  R. Bintanja,et al.  Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes , 2021, Communications Earth & Environment.

[21]  Jianli Chen,et al.  Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation , 2020, Scientific Reports.

[22]  T. Fichefet,et al.  Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet , 2020, The Cryosphere.

[23]  C. Shields,et al.  Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment , 2020, Journal of geophysical research. Atmospheres : JGR.

[24]  A. Shepherd,et al.  Earth's ice imbalance , 2020, The Cryosphere.

[25]  H. Fricker,et al.  Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves , 2020, Nature Geoscience.

[26]  K. Mankoff,et al.  Greenland Ice Sheet solid ice discharge from 1986 through March 2020 , 2020, Earth System Science Data.

[27]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[28]  Thorsten Markus,et al.  Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes , 2020, Science.

[29]  J. Donges,et al.  The tipping points and early warning indicators for Pine Island Glacier, West Antarctica , 2020, The Cryosphere.

[30]  James R. Jordan,et al.  Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018 , 2020, Journal of Glaciology.

[31]  F. Martin Ralph,et al.  Responses and impacts of atmospheric rivers to climate change , 2020, Nature Reviews Earth & Environment.

[32]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[33]  Won Sang Lee,et al.  Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet , 2019, Nature Geoscience.

[34]  Susheel Adusumilli,et al.  Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves , 2019, Geophysical Research Letters.

[35]  R. Bingham,et al.  The Impact of the Extreme 2015–2016 El Niño on the Mass Balance of the Antarctic Ice Sheet , 2019, Geophysical Research Letters.

[36]  J. Turner,et al.  West Antarctic surface melt triggered by atmospheric rivers , 2019, Nature Geoscience.

[37]  S. Bacon,et al.  Wind-Driven Processes Controlling Oceanic Heat Delivery to the Amundsen Sea, Antarctica , 2019, Journal of Physical Oceanography.

[38]  T. Bracegirdle,et al.  West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing , 2019, Nature Geoscience.

[39]  Marcus E. Engdahl,et al.  Trends in Antarctic Ice Sheet Elevation and Mass , 2019, Geophysical research letters.

[40]  J. Turner,et al.  The Dominant Role of Extreme Precipitation Events in Antarctic Snowfall Variability , 2019, Geophysical Research Letters.

[41]  X. Fettweis,et al.  Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes , 2019, The Cryosphere.

[42]  Eric Rignot,et al.  Four decades of Antarctic Ice Sheet mass balance from 1979–2017 , 2019, Proceedings of the National Academy of Sciences.

[43]  B. Medley,et al.  Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise , 2018, Nature Climate Change.

[44]  Myoung-Jong Noh,et al.  The Reference Elevation Model of Antarctica , 2018, The Cryosphere.

[45]  X. Fettweis,et al.  Atmospheric River Impacts on Greenland Ice Sheet Surface Mass Balance , 2018, Journal of Geophysical Research: Atmospheres.

[46]  Adrian Jenkins,et al.  West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability , 2018, Nature Geoscience.

[47]  T. Fichefet,et al.  Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR , 2018, The Cryosphere.

[48]  Eric Rignot,et al.  Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018, Nature.

[49]  H. Fricker,et al.  Trends and connections across the Antarctic cryosphere , 2018, Nature.

[50]  Theodore A. Scambos,et al.  Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years , 2018 .

[51]  J. Renwick,et al.  The role of Amundsen–Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica , 2018, Climate Dynamics.

[52]  K. Assmann,et al.  Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica , 2017 .

[53]  H. Fricker,et al.  Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation , 2017, Nature Geoscience.

[54]  M. R. van den Broeke,et al.  The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation , 2017, Geophysical research letters.

[55]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016) , 2017 .

[56]  Michael D. Dettinger,et al.  Atmospheric rivers emerge as a global science and applications focus , 2017 .

[57]  Donald D. Blankenship,et al.  Antarctic Mapping Tools for Matlab , 2017, Comput. Geosci..

[58]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[59]  Bernd Scheuchl,et al.  Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data , 2017, Remote. Sens..

[60]  J. Turner,et al.  Atmosphere‐ocean‐ice interactions in the Amundsen Sea Embayment, West Antarctica , 2017 .

[61]  Baptiste Vandecrux,et al.  Liquid Water Flow and Retention on the Greenland Ice Sheet in the Regional Climate Model HIRHAM5: Local and Large-Scale Impacts , 2017, Front. Earth Sci..

[62]  S. Jacobs,et al.  Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea , 2016 .

[63]  D. Vaughan,et al.  Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier , 2016, Nature.

[64]  Sridhar Anandakrishnan,et al.  Sensitivity of Pine Island Glacier to observed ocean forcing , 2016 .

[65]  V. Masson‐Delmotte,et al.  Three-year monitoring of stable isotopes of precipitation at Concordia Station, East Antarctica , 2016 .

[66]  D. Dixon,et al.  The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate , 2016 .

[67]  J. Turner,et al.  Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing , 2016 .

[68]  Karen E. Frey,et al.  Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios , 2015 .

[69]  J. Hosking,et al.  Twentieth century increase in snowfall in coastal West Antarctica , 2015 .

[70]  T. Scambos,et al.  Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013 , 2015, Journal of geophysical research. Solid earth.

[71]  Adrian J. McDonald,et al.  The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology , 2015 .

[72]  J. Kennedy,et al.  A Tripole Index for the Interdecadal Pacific Oscillation , 2015, Climate Dynamics.

[73]  E. Rignot,et al.  Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques , 2014 .

[74]  Nicole Van Lipzig,et al.  The role of atmospheric rivers in anomalous snow accumulation in East Antarctica , 2014 .

[75]  B. Scheuchl,et al.  Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 , 2014 .

[76]  Eric Rignot,et al.  Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 , 2014, Geophysical Research Letters.

[77]  A. Payne,et al.  Retreat of Pine Island Glacier controlled by marine ice-sheet instability , 2014 .

[78]  A. Jenkins,et al.  Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability , 2014, Science.

[79]  K. Assmann,et al.  Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough , 2013 .

[80]  J. Turner,et al.  The Influence of the Amundsen–Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations , 2013 .

[81]  B. Scheuchl,et al.  Ice-Shelf Melting Around Antarctica , 2013, Science.

[82]  J. Turner,et al.  The Amundsen Sea low , 2013 .

[83]  K. Assmann,et al.  Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica , 2012 .

[84]  M. R. van den Broeke,et al.  An improved semi-empirical model for the densification of Antarctic firn , 2011 .

[85]  Damien Garcia,et al.  A fast all-in-one method for automated post-processing of PIV data , 2011, Experiments in fluids.

[86]  D. Bromwich,et al.  Understanding the SAM influence on the South Pacific ENSO teleconnection , 2011 .

[87]  Damien Garcia,et al.  Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..

[88]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[89]  David M. Holland,et al.  Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica , 2008 .

[90]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[91]  T. Lachlan-Cope,et al.  Teleconnections between the tropical Pacific and the Amundsen‐Bellinghausens Sea: Role of the El Niño/Southern Oscillation , 2006 .

[92]  D. Dixon,et al.  Climate variability in West Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores , 2004, Annals of Glaciology.

[93]  C. Genthon,et al.  Intermittent signature of ENSO in west‐Antarctic precipitation , 2003 .

[94]  M. Broeke The semi-annual oscillation and Antarctic climate. Part 3 : The role of near-surface wind speed and cloudiness , 2000 .

[95]  H. Hellmer,et al.  Antarctic Ice Sheet melting in the southeast Pacific , 1996 .

[96]  David H. Bromwich,et al.  Snowfall in high southern latitudes , 1988 .

[97]  V. Verjans Characteristics of the contemporary Antarctic firn layer simulated with IMAU-FDM v1.2A (1979-2020) , 2022 .

[98]  K. Assmann,et al.  The Impact of Overturning and Horizontal Circulation in Pine Island Trough on Ice Shelf Melt in the Eastern Amundsen Sea , 2019, Journal of Physical Oceanography.

[99]  A. Jenkins,et al.  Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica , 2012, Annals of Glaciology.