A many-body stochastic approach to rotational motions in liquids : complex decay times in highly viscous fluids

[1]  H. Sillescu,et al.  Nonexponential 2H spin-lattice relaxation as a signature of the glassy state , 1990 .

[2]  C. Angell,et al.  On the relaxation between Debye and nonexponential relaxation in supercooled monohydric alcohols and water: A solution study , 1989 .

[3]  S. Kivelson,et al.  Models of rotational relaxation above the glass transition , 1989 .

[4]  E. Rössler,et al.  2H‐NMR study of the glass transition in supercooled ortho‐terphenyl , 1988 .

[5]  Danny G. Miles,et al.  Bimodal angular hopping model for molecular rotations in liquids , 1988 .

[6]  R. Nozaki,et al.  Dielectric relaxation measurements of poly(vinyl acetate) in glassy state in the frequency range 10−6–106 Hz , 1987 .

[7]  G. Moro,et al.  Diffusion between inequivalent sites , 1986 .

[8]  G. Moro,et al.  Diffusive and jump description of hindered motions , 1985 .

[9]  Jack H. Freed,et al.  Classical time‐correlation functions and the Lanczos algorithm , 1981 .

[10]  J. Freed,et al.  Stochastic modeling of generalized Fokker-Planck equations. I. , 1980 .

[11]  M. Davies Dielectric and Related Molecular Processes , 1977 .

[12]  J. Freed,et al.  Generalized Einstein relations for rotational and translational diffusion of molecules including spin , 1975 .

[13]  G. P. Johari Intrinsic mobility of molecular glasses , 1973 .

[14]  D. Kivelson Unified theory of orientational relaxation , 1972 .

[15]  W. V. Roosbroeck Fluctuation Phenomena in Solids. R. E. Burgess, Ed. Academic Press, New York, 1965. xii + 389 pp. Illus. $14 , 1965 .