Investigation of disequilibrium clumped isotope fractionation in (speleothem) CaCO3 with cave analogous laboratory experiments using thin films of flowing solution

[1]  J. Fohlmeister,et al.  Are oxygen isotope fractionation factors between calcite and water derived from speleothems systematically biased due to prior calcite precipitation (PCP)? , 2021, Geochimica et Cosmochimica Acta.

[2]  D. Scholz,et al.  Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures , 2020, Nature Communications.

[3]  H. Schwarcz,et al.  Carbon and oxygen isotope systematics in cave environments: Lessons from an artificial cave “McMaster Cave” , 2020 .

[4]  W. Dreybrodt Kinetic fractionation of the isotope composition of 18O, 13C, and of clumped isotope 18O13C in calcite deposited to speleothems. Implications to the reliability of the 18O and Δ47 paleothermometers , 2019 .

[5]  Weifu Guo,et al.  Patterns and controls of disequilibrium isotope effects in speleothems: Insights from an isotope-enabled diffusion-reaction model and implications for quantitative thermometry , 2019 .

[6]  A. Colman,et al.  Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral‐Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation , 2019, Geochemistry, Geophysics, Geosystems.

[7]  B. Schöne,et al.  Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3 , 2019, Chemical Geology.

[8]  R. Drysdale,et al.  Most Earth-surface calcites precipitate out of isotopic equilibrium , 2018, Nature Communications.

[9]  D. Fleitmann,et al.  Noble gas based temperature reconstruction on a Swiss stalagmite from the last glacial–interglacial transition and its comparison with other climate records , 2018, Earth and Planetary Science Letters.

[10]  Xiuli Li,et al.  Evaluation of the Heshang Cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record , 2018, Scientific Reports.

[11]  B. Schöne,et al.  Carbon isotope exchange between gaseous CO 2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model , 2017 .

[12]  A. Schauer,et al.  Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship , 2017 .

[13]  D. Blamart,et al.  Absolute isotopic abundance ratios and the accuracy of Δ47 measurements , 2016 .

[14]  R. Edwards,et al.  Correction: Corrigendum: The Asian monsoon over the past 640,000 years and ice age terminations , 2016, Nature.

[15]  C. John,et al.  Community software for challenging isotope analysis: First applications of 'Easotope' to clumped isotopes. , 2016, Rapid communications in mass spectrometry : RCM.

[16]  Christopher C. Day,et al.  Calcium isotopes in caves as a proxy for aridity: Modern calibration and application to the 8.2 kyr event , 2016 .

[17]  D. Scholz,et al.  Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO 2 of the cave atmosphere , 2016 .

[18]  J. Watkins,et al.  A process-based model for non-equilibrium clumped isotope effects in carbonates , 2015 .

[19]  D. Fleitmann,et al.  Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers , 2015 .

[20]  M. Ziegler,et al.  Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95 °C temperature range , 2015 .

[21]  J. Crawshaw,et al.  Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250°C temperature range , 2015 .

[22]  O. Vaselli,et al.  Isotopic patterns of hydrothermal hydrocarbons emitted from Mediterranean volcanoes , 2015 .

[23]  D. DePaolo,et al.  The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite , 2014 .

[24]  M. Bar-Matthews,et al.  Accounting for kinetic isotope effects in Soreq Cave (Israel) speleothems , 2014 .

[25]  H. P. Affek,et al.  Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments , 2014 .

[26]  C. Spötl,et al.  Devils Hole paleotemperatures and implications for oxygen isotope equilibrium fractionation , 2014 .

[27]  M. Ziegler,et al.  Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. , 2014, Rapid communications in mass spectrometry : RCM.

[28]  D. Fleitmann,et al.  New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS) , 2014 .

[29]  A. Tripati,et al.  Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals , 2014 .

[30]  Stefan Schouten,et al.  Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems , 2013 .

[31]  D. Scholz,et al.  Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO2 during speleothem growth , 2013 .

[32]  M. Gagan,et al.  An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records , 2013 .

[33]  Bin Hu,et al.  Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. , 2013, Rapid communications in mass spectrometry : RCM.

[34]  D. Scholz,et al.  Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data , 2013 .

[35]  J. Fohlmeister,et al.  Reconstruction of drip-water δ 18 O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany) , 2013 .

[36]  A. Colman,et al.  Pressure baseline correction and high-precision CO2 clumped-isotope (∆47) measurements in bellows and micro-volume modes. , 2012, Rapid communications in mass spectrometry : RCM.

[37]  R. Zeebe,et al.  The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: Implications for δ18O vital effects in biogenic carbonates , 2012 .

[38]  H. P. Affek,et al.  Quantifying kinetic fractionation in Bunker Cave speleothems using Δ47 , 2012 .

[39]  C. Spötl,et al.  Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change , 2012 .

[40]  T. Atkinson,et al.  A first evaluation of the spatial gradients in delta O-18 recorded by European Holocene speleothems , 2011 .

[41]  J. Eiler Paleoclimate reconstruction using carbonate clumped isotope thermometry , 2011 .

[42]  R. Edwards,et al.  NALPS: a precisely dated European climate record 120–60 ka , 2011 .

[43]  D. Schrag,et al.  Defining an absolute reference frame for 'clumped' isotope studies of CO 2 , 2011 .

[44]  J. Fohlmeister,et al.  Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site , 2011 .

[45]  D. Fleitmann,et al.  Liquid-vapour homogenisation of fluid inclusions in stalagmites: Evaluation of a new thermometer for palaeoclimate research , 2011 .

[46]  D. Fleitmann,et al.  Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions , 2011 .

[47]  Yang Wang,et al.  Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system , 2011 .

[48]  G. Henderson,et al.  Oxygen isotopes in calcite grown under cave-analogue conditions , 2011 .

[49]  R. Drysdale,et al.  13C18O clumping in speleothems: Observations from natural caves and precipitation experiments , 2011 .

[50]  R. Edwards,et al.  Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems , 2011 .

[51]  Daniel J. Sinclair,et al.  Two mathematical models of Mg and Sr partitioning into solution during incongruent calcite dissolution: Implications for dripwater and speleothem studies , 2011 .

[52]  D. DePaolo Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions , 2011 .

[53]  D. Polag,et al.  Stable isotope fractionation in speleothems: Laboratory experiments , 2010 .

[54]  S. Burns,et al.  Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts , 2010 .

[55]  J. Eiler,et al.  Methods and limitations of 'clumped' CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry. , 2009, Journal of mass spectrometry : JMS.

[56]  I. Fairchild,et al.  Trace elements in speleothems as recorders of environmental change , 2009 .

[57]  M. Lachniet,et al.  Climatic and environmental controls on speleothem oxygen-isotope values , 2009 .

[58]  J. Hellstrom,et al.  Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia , 2008 .

[59]  D. Polag,et al.  Investigation of the stable isotope fractionation in speleothems with laboratory experiments , 2008 .

[60]  D. Hoffmann,et al.  230Th/U-dating of fossil corals and speleothems , 2008 .

[61]  W. Aeschbach–Hertig,et al.  A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems , 2008 .

[62]  Gideon M. Henderson,et al.  Quantification of Holocene Asian monsoon rainfall from spatially separated cave records , 2008 .

[63]  John M. Eiler,et al.  Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry , 2007 .

[64]  R. Drysdale,et al.  The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia , 2007 .

[65]  F. McDermott,et al.  Detecting NAO-mode variability in high-resolution speleothem isotope records , 2006 .

[66]  J. Eiler,et al.  Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics , 2006 .

[67]  John M. Eiler,et al.  13 C- 18 O bonds in carbonate minerals: A new kind of paleothermometer , 2006 .

[68]  John W. Morse,et al.  Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C , 2005 .

[69]  C. Spötl,et al.  Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record , 2005 .

[70]  Christoph Spötl,et al.  Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves , 2005 .

[71]  Mathias Vuille,et al.  Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil , 2005, Nature.

[72]  J. Eiler,et al.  Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases , 2004 .

[73]  F. McDermott,et al.  Palaeo-climate reconstruction from stable isotope variations in speleothems: a review , 2004 .

[74]  S. Burns,et al.  Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually lamin , 2004 .

[75]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[76]  M. Bar-Matthews,et al.  Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals , 2003 .

[77]  W. Barnes,et al.  Testing Theoretically Predicted Stalagmite Growth Rate with Recent Annually Laminated Samples: Implications for Past Stalagmite Deposition , 1998 .

[78]  W. G. Mook,et al.  CARBON ISOTOPE FRACTIONATION BETWEEN DISSOLVED BICARBONATE AND GASEOUS CARBON-DIOXIDE , 1974 .

[79]  W. G. Mook,et al.  Isotopic fractionation between gaseous and dissolved carbon dioxide , 1970 .

[80]  T. Kluge,et al.  Isotope exchange rates in dissolved inorganic carbon between 40 °C and 90 °C , 2020 .

[81]  Weifu Guo Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: Patterns, controls, and implications , 2020 .

[82]  M. Bar-Matthews,et al.  Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5 , 2011 .

[83]  Patrick J. Mickler,et al.  Large kinetic isotope effects in modern speleothems , 2006 .

[84]  J. Eiler,et al.  Abundance of mass 47 CO2 in urban air, car exhaust, and human breath , 2006 .

[85]  D. Richards,et al.  Uranium-series Chronology and Environmental Applications of Speleothems , 2003 .