3-D chamfer distances and norms in anisotropic grids

Chamfer distances are widely used in image analysis and many authors have investigated the computation of optimal chamfer mask coefficients. Unfortunately, these methods are not systematized: calculations have to be conducted manually for every mask size or image anisotropy. Since image acquisition (e.g. medical imaging) can lead to discrete anisotropic grids with unpredictable anisotropy value, automated calculation of chamfer mask coefficients becomes mandatory for efficient distance map computations. This article presents an automatic construction for chamfer masks of arbitrary sizes. This allows, first, to derive analytically the relative error with respect to the Euclidean distance, in any 3-D anisotropic lattice, and second, to compute optimal chamfer coefficients. In addition, the resulting chamfer map verifies discrete norm conditions.

[1]  David Coeurjolly Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. (Algorithmic and digital geometry for curve and surface characterization) , 2002 .

[2]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[3]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[4]  Tomio Hirata,et al.  A Unified Linear-Time Algorithm for Computing Distance Maps , 1996, Inf. Process. Lett..

[5]  Gunilla Borgefors,et al.  On Digital Distance Transforms in Three Dimensions , 1996, Comput. Vis. Image Underst..

[6]  Eric Remy Normes de chanfrein et axe médian dans le volume discret. (Chamfer norms and medial axis in the discrete volume) , 2001 .

[7]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[8]  Philippe Bolon,et al.  Discrete distance operator on rectangular grids , 1995, Pattern Recognit. Lett..

[9]  B.J.H. Verwer Distance transforms, metrics, algorithms and applications , 1991 .

[10]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[11]  P. Danielsson Euclidean distance mapping , 1980 .

[12]  Jun-ichiro Toriwaki,et al.  New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..

[13]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.

[14]  Edouard Thiel Les distances de chanfrein en analyse d'images : fondements et applications. (Chamfer distances in image analysis : basis and applications) , 1994 .

[15]  Grégoire Malandain,et al.  Skeletonization by blocks for large 3D datasets: application to brain microcirculation , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[16]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[17]  Ben J. H. Verwer,et al.  Local distances for distance transformations in two and three dimensions , 1991, Pattern Recognit. Lett..

[18]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[19]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[20]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[21]  Gunilla Borgefors,et al.  Weighted distance transforms for volume images digitized in elongated voxel grids , 2004, Pattern Recognit. Lett..

[22]  Edouard Thiel,et al.  Optimizing 3D chamfer masks with norm constraints , 2000 .

[23]  Ingemar Ragnemalm,et al.  The Euclidean distance transform in arbitrary dimensions , 1992, Pattern Recognit. Lett..

[24]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .