Calcium channels: cellular roles and molecular mechanisms

[1]  J. Nakai,et al.  Critical roles of the S3 segment and S3-S4 linker of repeat I in activation of L-type calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Adams,et al.  Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells , 1994, Nature.

[3]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[4]  A. Momiyama,et al.  Different types of calcium channels mediate central synaptic transmission , 1993, Nature.

[5]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.

[6]  E. Stefani,et al.  Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. , 1993, Science.

[7]  H. Yawo,et al.  Preferential inhibition of oω-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors , 1993, Nature.

[8]  R. Tsien,et al.  Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α 1 subunits , 1993, Neuron.

[9]  K. Campbell,et al.  Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. , 1993, Science.

[10]  P. Hess,et al.  Characterization of the high‐affinity Ca2+ binding sites in the L‐type Ca2+ channel pore in rat phaeochromocytoma cells. , 1993, The Journal of physiology.

[11]  R. Tsien,et al.  Functional expression of a rapidly inactivating neuronal calcium channel , 1993, Nature.

[12]  G. Schultz,et al.  G-proteins involved in the calcium channel signalling system , 1993, Current Opinion in Neurobiology.

[13]  S. Vincent,et al.  Structure and functional expression of a member of the low voltage-activated calcium channel family. , 1993, Science.

[14]  J. Nakai,et al.  Primary structure and functional expression of the ω-conotoxin-sensitive N-type calcium channel from rabbit brain , 1993, Neuron.

[15]  Y. Mori,et al.  Structural determinants of ion selectivity in brain calcium channel , 1993, FEBS letters.

[16]  D. Lovinger,et al.  Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission , 1993, Nature.

[17]  M. Adams,et al.  Calcium channels coupled to glutamate release identified by omega-Aga-IVA. , 1992, Science.

[18]  M. Williams,et al.  Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. , 1992, Science.

[19]  A. Fox,et al.  Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaff in cells , 1992, Nature.

[20]  B. Bean,et al.  A new conus peptide ligand for mammalian presynaptic Ca2+ channels , 1992, Neuron.

[21]  J. Hell,et al.  Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Reiner,et al.  Ca2+ channels: diversity of form and function , 1992, Current Opinion in Neurobiology.

[23]  Y. Jan,et al.  Tracing the roots of ion channels , 1992, Cell.

[24]  R. Llinás,et al.  P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Adams,et al.  P-type calcium channels blocked by the spider toxin ω-Aga-IVA , 1992, Nature.

[26]  Mark E. Williams,et al.  Structure and functional expression of α 1, α 2, and β subunits of a novel human neuronal calcium channel subtype , 1992, Neuron.

[27]  A. Fox,et al.  Three types of bovine chromaffin cell Ca2+ channels: facilitation increases the opening probability of a 27 pS channel. , 1991, The Journal of physiology.

[28]  A. Brown,et al.  Heterologous regulation of the cardiac Ca2+ channel alpha 1 subunit by skeletal muscle beta and gamma subunits. Implications for the structure of cardiac L-type Ca2+ channels. , 1991, The Journal of biological chemistry.

[29]  C. Armstrong,et al.  Ion Permeation through Calcium Channels , 1991 .

[30]  W. Catterall,et al.  Functional subunit structure of voltage-gated calcium channels. , 1991, Science.

[31]  M. Biel,et al.  The roles of the subunits in the function of the calcium channel. , 1991, Science.

[32]  B. Adams,et al.  Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics , 1991, Nature.

[33]  A. Brown,et al.  Normalization of current kinetics by interaction between the α1and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel , 1991, Nature.

[34]  P. Lory,et al.  Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel , 1991, Nature.

[35]  T. Snutch,et al.  Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS , 1991, Neuron.

[36]  J. Nakai,et al.  Primary structure and functional expression from complementary DNA of a brain calcium channel , 1991, Nature.

[37]  B. Bean,et al.  Ca2+ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and ω-conotoxin , 1991, Neuron.

[38]  L. Birnbaumer,et al.  Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. , 1990, The Journal of biological chemistry.

[39]  B. Adams,et al.  Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling , 1990, Nature.

[40]  K. Beam,et al.  Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA , 1990, Nature.

[41]  S. Narumiya,et al.  Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel , 1989, Nature.

[42]  Jose R. Lemos,et al.  Two types of calcium channels coexist in peptide-releasing vertebrate nerve terminals , 1989, Neuron.

[43]  K. Beam,et al.  Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA , 1988, Nature.

[44]  R. Kream,et al.  Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[46]  R. Tsien,et al.  Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Ríos,et al.  Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle , 1987, Nature.

[48]  K. Beam,et al.  A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells , 1986, Nature.

[49]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[50]  D. Yoshikami,et al.  A venom peptide with a novel presynaptic blocking action , 1984, Nature.

[51]  H. Yawo,et al.  Re‐evaluation of calcium currents in pre‐ and postsynaptic neurones of the chick ciliary ganglion. , 1993, The Journal of physiology.

[52]  R. Tsien,et al.  Molecular diversity of voltage-dependent Ca2+ channels. , 1991, Trends in pharmacological sciences.

[53]  B. Bean,et al.  Classes of calcium channels in vertebrate cells. , 1989, Annual review of physiology.

[54]  R. Tsien,et al.  Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. , 1988, Science.

[55]  T. Narahashi Drugs Acting on Calcium Channels , 1988 .

[56]  R. Tsien,et al.  Calcium channels: mechanisms of selectivity, permeation, and block. , 1987, Annual review of biophysics and biophysical chemistry.

[57]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.