23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants

A wireless sensor that is powered from the endocochlear potential (EP), a 70-to-100mV bio-potential inside the mammalian ear, has been demonstrated in [1]. Due to the anatomical size and physiological constraints inside the ear, a maximum of 1.1 to 6.25nW can be extracted from the EP. The nanowatt power budget of the sensor gives rise to unique challenges with power conversion efficiency and quiescent current reduction in the power management unit (PMU). While [1] presents the system aspects of the biomedical harvesting including the biologic interface and system measurements, this work presents the details of the nanowatt PMU required to power the electronics. More specifically, it focuses on the low-power circuit design techniques needed to realize a nW power converter that is applicable to a broad spectrum of emerging biomedical applications with ultra-low energy-harvesting sources.

[1]  David Blaauw,et al.  A cubic-millimeter energy-autonomous wireless intraocular pressure monitor , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[3]  Anantha P. Chandrakasan,et al.  A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.

[4]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[5]  Anantha Chandrakasan,et al.  A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting , 2012, 2012 IEEE International Solid-State Circuits Conference.

[6]  Michel Declercq,et al.  A high-efficiency CMOS voltage doubler , 1998, IEEE J. Solid State Circuits.

[7]  Richard T. Witek,et al.  A 160 MHz 32 b 0.5 W CMOS RISC microprocessor , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[8]  Scott K. Arfin,et al.  Fast startup CMOS current references , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[9]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[10]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[11]  Diana Hodgins,et al.  Healthy Aims: Developing New Medical Implants and Diagnostic Equipment , 2008, IEEE Pervasive Computing.

[12]  A. Chandrakasan,et al.  Energy extraction from the biologic battery in the inner ear , 2012, Nature Biotechnology.

[13]  V. S. Mallela,et al.  Trends in Cardiac Pacemaker Batteries , 2004, Indian pacing and electrophysiology journal.

[14]  Anantha Chandrakasan,et al.  A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage , 2010, IEEE Journal of Solid-State Circuits.

[15]  Anantha P. Chandrakasan,et al.  Enabling Sub-nW RF circuits through subthreshold leakage management , 2013, 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[16]  R. Sarpeshkar,et al.  A Glucose Fuel Cell for Implantable Brain–Machine Interfaces , 2012, PloS one.

[17]  S.R. Sanders,et al.  Analysis and Optimization of Switched-Capacitor DC–DC Converters , 2008, IEEE Transactions on Power Electronics.

[18]  Stephen H. Lewis,et al.  An energy-aware multiple-input power supply with charge recovery for energy harvesting applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[19]  Charles R. Sullivan,et al.  Synchronous rectification with adaptive timing control , 1995, Proceedings of PESC '95 - Power Electronics Specialist Conference.

[20]  Yoshihisa Kurachi,et al.  How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus , 2010, Pflügers Archiv - European Journal of Physiology.

[21]  Anantha P. Chandrakasan,et al.  A 78 pW 1 b/s 2.4 GHz radio transmitter for near-zero-power sensing applications , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[22]  Koichi Ishida,et al.  Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and ${\rm V}_{\rm TH}$-Tuned Oscillator With Fixed Charge Programming , 2012, IEEE Journal of Solid-State Circuits.

[23]  Anantha Chandrakasan,et al.  Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[24]  David Blaauw,et al.  A 150pW program-and-hold timer for ultra-low-power sensor platforms , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[25]  Georg v. Békésy,et al.  D-C resting potentials inside the cochlear partition , 1952 .

[26]  R. D. Black,et al.  Recent Advances in Translational Work on Implantable Sensors , 2011, IEEE Sensors Journal.

[27]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.