On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation

Abstract A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Single-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case ...

[1]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  P. Bélanger Estimation of noise covariance matrices for a linear time-varying stochastic process , 1972, at - Automatisierungstechnik.

[4]  R. McPherson,et al.  The NMC Operational Global Data Assimilation System , 1979 .

[5]  Kenneth H. Bergman,et al.  Multivariate Analysis of Temperatures and Winds Using Optimum Interpolation , 1979 .

[6]  S. Cohn,et al.  Applications of Estimation Theory to Numerical Weather Prediction , 1981 .

[7]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[8]  Philip E. Gill,et al.  Practical optimization , 1981 .

[9]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[10]  S. Cohn Methods of Sequential Estimation for Determining Initial Data in Numerical Weather Prediction , 1982 .

[11]  G. Boer A Spectral Analysis of Predictability and Error in an Operational Forecast System , 1984 .

[12]  Michael Ghil,et al.  An efficient algorithm for estimating noise covariances in distributed systems , 1985 .

[13]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[14]  Norman A. Phillips,et al.  The spatial statistics of random geostrophic modes and first-guess errors , 1986 .

[15]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[16]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[17]  A. Dalcher,et al.  Error growth and predictability in operational ECMWF forecasts , 1987 .

[18]  Joseph Tribbia,et al.  The Reliability of Improvements in Deterministic Short-Range Forecasts in the Presence of Initial State and Modeling Deficiencies , 1988 .

[19]  Dick Dee,et al.  Observability of discretized partial differential equations , 1988 .

[20]  Dick P. Dee,et al.  Simplified adaptive Kalman filtering for large-scale geophysical models , 1990 .

[21]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[22]  D. Dee Simplification of the Kalman filter for meteorological data assimilation , 1991 .

[23]  R. Daley Atmospheric Data Analysis , 1991 .

[24]  Stephen E. Cohn,et al.  The Behavior of Forecast Error Covariances for a Kalman Filter in Two Dimensions , 1991 .

[25]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[26]  R. Daley Estimating Model-Error Covariances for Application to Atmospheric Data Assimilation , 1992 .

[27]  R. Daley The Lagged Innovation Covariance: A Performance Diagnostic for Atmospheric Data Assimilation , 1992 .

[28]  S. Cohn Dynamics of Short-Term Univariate Forecast Error Covariances , 1993 .

[29]  R. Daley Estimating observation error statistics for atmospheric data assimilation , 1993 .

[30]  R. Lynn Kirlin,et al.  Robust Adaptive Kalman Filtering , 1993 .

[31]  Richard B. Rood,et al.  An assimilated dataset for Earth science applications , 1993 .

[32]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[33]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[34]  D P Dee A SIMPLE SCHEME FOR TUNING FORECAST ERRORCOVARIANCE , .