Commutators and rough kernels without zero homogeneous condition

In this paper, we consider the commutator [b,T] : L2 → L2, where b ∈ BMO and T is defined by the convolution type Calderon–Zygmund operators satisfying the weak boundedness condition and Hormander ...

[1]  D. Fan,et al.  Lp-Boundedness of Marcinkiewicz Integrals with Hardy Space Function Kernels , 2000 .

[2]  On Hörmander condition , 1997 .

[3]  G. Hu $L^{p}(ℝⁿ)$ boundedness for the commutator of a homogeneous singular integral operator , 2003 .

[4]  H. Triebel,et al.  Wavelet bases and entropy numbers in weighted function spaces , 2005 .

[5]  Y. Meyer,et al.  Compensated compactness and Hardy spaces , 1993 .

[6]  Yibiao Pan,et al.  LP Bounds for Singular Integrals Associated to Surfaces of Revolution , 2002 .

[7]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[8]  L. Grafakos,et al.  On the p-independence boundedness property of Calderón-Zygmund theory , 2007 .

[9]  Fritz Keinert,et al.  Biorthogonal Wavelets for Fast Matrix Computations , 1994 .

[10]  Stanley Osher,et al.  Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..

[11]  Yong Ding,et al.  Fast algorithm for calderón-zygmund operators: convergence speed and rough kernel , 2016 .

[12]  Ronald R. Coifman,et al.  Factorization theorems for Hardy spaces in several variables , 1976 .

[13]  J. Duoandikoetxea,et al.  Maximal and singular integral operators via Fourier transform estimates , 1986 .

[14]  K. Lau,et al.  Wavelet decomposition of Calderón-Zygmund operators on function spaces , 2004, Journal of the Australian Mathematical Society.

[15]  Y. Meyer,et al.  CONTINUITY OF CALDERÓN–ZYGMUND OPERATORS ON BESOV OR TRIEBEL–LIZORKIN SPACES , 2008 .

[16]  Yang Xiang Fast Algorithms for Calderón–Zygmund Singular Integral Operators , 1996 .

[17]  Ahmad Al-Salman,et al.  Rough Marcinkiewicz integral operators , 2001 .

[18]  L. Grafakos,et al.  $L^p$ bounds for singular integrals and maximal singular integrals with rough kernels , 1997, math/9710205.

[19]  G. Hu L2(ℝ n ) boundedness for the commutators of convolution operators , 2001, Nagoya Mathematical Journal.

[20]  Jiecheng Chen,et al.  Boundedness of rough singular integral operators on the Triebel–Lizorkin spaces , 2008 .

[21]  J. Duoandikoetxea Weighted norm inequalities for homogeneous singular integrals , 1993 .

[22]  Maria Cristina Recchioni,et al.  The Use of Wavelets in the Operator Expansion Method for Time-Dependent Acoustic Obstacle Scattering , 2003, SIAM J. Sci. Comput..

[23]  D. Deng,et al.  Blocking analysis andT(1) theorem , 1998 .

[24]  BCR algorithm and the T(b) Theorem , 2007, math/0702282.

[25]  Yong Ding,et al.  Rough singular integrals on Triebel-Lizorkin space and Besov space , 2008 .