Small but influential: the role of microRNAs on gene regulatory network and 3'UTR evolution.

MicroRNAs (miRNAs) are endogenous approximately 22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the miRNA roles identified in nearly all aspects of biological processes, evidence is mounting that miRNAs could represent a new layer of regulatory network, and their regulatory effect might be much more pervasive than previously suspected. Here we focus on the post-transcriptional level gene regulation of miRNAs in animals and review how the miRNAs act to sustain and shape up the expression profiles of specific cell types; how the miRNAs integrate into the existing gene regulatory networks; and how the miRNAs influence the evolution of 3'UTR of mammalian mRNAs.

[1]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[3]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[4]  Q. Cui,et al.  Principles of microRNA regulation of a human cellular signaling network , 2006, Molecular systems biology.

[5]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[6]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[7]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[8]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[9]  Yuval Kluger,et al.  Inter- and intra-combinatorial regulation by transcription factors and microRNAs , 2007, BMC Genomics.

[10]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[11]  Donald C. Chang,et al.  Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. , 2008, RNA.

[12]  Hans Lassmann,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005 .

[13]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[14]  N. Rajewsky,et al.  Cell-type-specific signatures of microRNAs on target mRNA expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature reviews genetics.

[16]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[17]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[18]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[19]  Kai Zeng,et al.  Adaptive evolution of newly emerged micro-RNA genes in Drosophila. , 2008, Molecular biology and evolution.

[20]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[21]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[22]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[23]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[24]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Bing Su,et al.  Molecular evolution of a primate-specific microRNA family. , 2008, Molecular biology and evolution.

[26]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[27]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[28]  Yitzhak Pilpel,et al.  Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network , 2007, PLoS Comput. Biol..

[29]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[30]  S. Moon,et al.  Human embryonic stem cells express a unique set of microRNAs. , 2004, Developmental biology.

[31]  Bing Su,et al.  Rapid evolution of an X-linked microRNA cluster in primates. , 2007, Genome research.

[32]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[33]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[34]  Dana Ridzon,et al.  Nonrestrictive developmental regulation of microRNA gene expression , 2006, Mammalian Genome.

[35]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[36]  W. Wong,et al.  A gene regulatory network in mouse embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[37]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[38]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[39]  Rui Zhang,et al.  MicroRNA regulation and the variability of human cortical gene expression , 2008, Nucleic acids research.

[40]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.