Reactivity of protein histidines toward the hydrated electron

[1]  S. S. Isied,et al.  Ruthenium-modified cytochrome c: temperature dependence of the rate of intramolecular electron transfer , 1984 .

[2]  S. S. Isied,et al.  Electron transfer across polypeptides. 2. Amino acids and flexible dipeptide bridging ligands , 1984 .

[3]  M. Klapper,et al.  One-electron reduction of flavoproteins: pulse radiolysis of chicken egg white riboflavin binding protein. , 1983, Biochemistry.

[4]  G. Mclendon,et al.  Collisionless photoinduced electron transfer from ruthenium tris(bipyridine)2+* homologs to methyl viologen (MV2+) in rigid glycerol solution , 1983 .

[5]  John R. Miller,et al.  Fast intramolecular electron transfer in radical ions over long distances across rigid saturated hydrocarbon spacers , 1983 .

[6]  J. Whitaker,et al.  Dynamics of ligand binding to alpha-chymotrypsin and to N-methyl-alpha-chymotrypsin. , 1982, Biochemistry.

[7]  J. Richards,et al.  Catalytic mechanism of serine proteases: reexamination of the pH dependence of the histidyl 1J13C2-H coupling constant in the catalytic triad of alpha-lytic protease. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Jortner,et al.  Effects of medium modes on electron transfer in a biological system , 1981 .

[9]  J. Shafer,et al.  Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy. , 1981, Biochemistry.

[10]  J. Shafer,et al.  Determination of a low pK for histidine-159 in the S-methylthio derivative of papain by proton nuclear magnetic resonance spectroscopy. , 1981, Biochemistry.

[11]  J. Shafer,et al.  Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a his-159--Cys-25 ion pair and its possible role in catalysis. , 1981, Biochemistry.

[12]  E. Land,et al.  Charge transfer in peptides. Effects of temperature, peptide length and solvent conditions upon intramolecular one-electron reactions involving tryptophan and tyrosine , 1981 .

[13]  D. Devault Quantum mechanical tunnelling in biological systems , 1980, Quarterly Reviews of Biophysics.

[14]  E. Land,et al.  Direct demonstration of electron transfer between tryptophan and tyrosine in proteins. , 1980, Biochemical and biophysical research communications.

[15]  M. Klapper,et al.  Applications of Pulse Radiolysis to Protein Chemistry , 1979, Quarterly Reviews of Biophysics.

[16]  P. Silver,et al.  Histidyl and tyrosyl residue ionization studies of subtilisin Novo. , 1979, Biochimica et biophysica acta.

[17]  John D. Roberts,et al.  Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of .alpha.-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases , 1978 .

[18]  J. Markley,et al.  Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha. , 1978, Biochemistry.

[19]  M. Klapper,et al.  Application of pulse radiolysis to the study of proteins: chymotrypsin and trypsin. , 1978, Biophysical journal.

[20]  M. Klapper,et al.  Fast reaction kinetics of one-electron transfer in proteins. The histidyl radical. Mode of electron migration , 1978 .

[21]  A. Bettelheim,et al.  The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solutions. III. Histidyl peptides. , 1977, Radiation research.

[22]  M. Klapper,et al.  Catalytic activity of Ntau-carboxymethylhistidine-12 ribonuclease: pH dependence. , 1977, Biochimica et biophysica acta.

[23]  G. Adams,et al.  Free radicals in biology: the pulse radiolysis approach , 1977 .

[24]  J. Shafer,et al.  Potentiometric determination of ionizations at the active site of papain. , 1976, Biochemistry.

[25]  R. Stroud,et al.  Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy. , 1976, Biochemistry.

[26]  J. Markley,et al.  The charge-relay system of serine proteinases: proton magnetic resonance titration studies of the four histidines of porcine trypsin. , 1976, Journal of molecular biology.

[27]  G. Adams,et al.  One-electron reduction reactions with enzymes in solution. A pulse radiolysis study , 1976 .

[28]  G. Lowe The Cysteine proteinases , 1976 .

[29]  A. Shafferman,et al.  Study of biochemical redox processes by the technique of pulse radiolysis. , 1975, Biochimica et biophysica acta.

[30]  J. Markley Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. , 1975, Biochemistry.

[31]  C. Woodward,et al.  Correlation of exchangeable (NH) and nonexchangeable (C2H) histidine resonances in the proton nmr spectrum of ribonuclease A in aqueous solution , 1975, Biopolymers.

[32]  J J Hopfield,et al.  Electron transfer between biological molecules by thermally activated tunneling. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Shafer,et al.  A two-step procedure for purification of papain from extract of papaya latex. , 1974, Archives of biochemistry and biophysics.

[34]  G. Robillard,et al.  High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. I. The hydrogen bonded protons of the "charge relay" system. , 1974, Journal of molecular biology.

[35]  A. Fersht,et al.  pH dependence of chymotrypsin catalysis. Appendix: substrate binding to dimeric alpha-chymotrypsin studied by x-ray diffraction and the equilibrium method. , 1974, Biochemistry.

[36]  L. Sluyterman,et al.  [67] Organomercurial agarose , 1974 .

[37]  A. Schechter,et al.  NUCLEAR MAGNETIC RESONANCE STUDIES OF A RIBONUCLEASE‐DINUCLEOSIDE PHOSPHONATE COMPLEX AND THEIR IMPLICATIONS FOR THE MECHANISM OF THE ENZYME , 1973, Annals of the New York Academy of Sciences.

[38]  M. Hunkapiller,et al.  Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. , 1973, Biochemistry.

[39]  R. Shulman,et al.  High resolution nuclear magnetic resonance study of the histidine--aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. , 1972, Journal of molecular biology.

[40]  J. Clement,et al.  Pulse Radiolysis of Aqueous Papain , 1972 .

[41]  L. Sluyterman,et al.  The effect of salts upon the pH dependence of the activity of papain and succinyl-papain. , 1972, Biochimica et biophysica acta.

[42]  C. Ryan,et al.  The purification by affinity chromatography of a proteinase inhibitor binding species of anhydro-chymotrypsin. , 1972, Biochemical and biophysical research communications.

[43]  T. Horbett,et al.  Reevaluation of the activation of bovine chymotrypsinogen A. , 1971, Biochemistry.

[44]  S. N. Timasheff,et al.  Dimerization of alpha-chymotrypsin. I. pH dependence in the acid region. , 1971, Biochemistry.

[45]  S. N. Timasheff,et al.  Dimerization of alpha-chymotrypsin. II. Ionic strength and temperature dependence. , 1971, Biochemistry.

[46]  L. Sluyterman,et al.  An agarose mercurial column for the separation of mercaptopapain and nonmercaptopapain. , 1970, Biochimica et biophysica acta.

[47]  I. Svendsen,et al.  [11] The subtilisins , 1970 .

[48]  P. E. Wilcox [5] Chymotrypsinogens—chymotrypsins , 1970 .

[49]  D. Meadows,et al.  Nuclear magnetic resonance studies of the sx.ucture and binding sites of enzymes. VII. Solvent and temperature effects on the ionization of histidine residues of ribonuclease. , 1969, Biochemistry.

[50]  H. Rüterjans,et al.  NMR-studies on the structure of the active site of pancreatic ribonuclease A. , 1969, European journal of biochemistry.

[51]  L. Polgár,et al.  Chromatography and activity of thiol-subtilisin. , 1969, Biochemistry.

[52]  D. Phillips,et al.  On the conformation of the hen egg-white lysozyme molecule , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  L. Polgár,et al.  The reactivity of thiol-subtilisin, an enzyme containing a synthetic functional group. , 1967, Biochemistry.

[54]  L. M. Dorfman,et al.  PULSE RADIOLYSIS STUDIES. IX. REACTIONS OF THE OZONIDE ION IN AQUEOUS SOLUTION. , 1967 .

[55]  J. Feder,et al.  The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. , 1966, Journal of the American Chemical Society.

[56]  E. Hart The Hydrated Electron , 1963, Science.

[57]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.