Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms

The analysis of bone breakage has always been underrepresented in taphonomic studies. Analysts, thus, lose the opportunity to resolve an important part of the equifinality related to activities that hominins and different types of carnivores may produce. Recent studies have shown that the use of powerful machine learning (ML) algorithms allow the accurate classification of bone surface modifications (BSM). Here, we present an experimental study, applying these algorithms to the analysis of bone breakage patterns. This statistical methodology allows the correct classification of three different assemblages which have been generated anthropogenically and by the activity of carnivores (i.e., hyenas and wolves). ML algorithms applied to a multivariate set of properties of broken bone specimens yielded an accuracy of 95% and were higher in classifying agency without the need to include information from BSM. This paper proposes a methodological approach that opens the door to improve our understanding of referential frameworks regarding bone breakage and to determine agency in prehistoric bone breakage processes.

[1]  Michael R Chernick,et al.  Bootstrap Methods: A Guide for Practitioners and Researchers , 2007 .

[2]  C. Musiba,et al.  A comparative Neo-Taphonomic study of Felids, Hyaenids and Canids: an analogical framework based on long bone modification patterns , 2012 .

[3]  M. Domínguez‐Rodrigo,et al.  Taphonomic analysis of the early Pleistocene (2.4 Ma) faunal assemblage from A.L. 894 (Hadar, Ethiopia). , 2012, Journal of human evolution.

[4]  J. Booth,et al.  Monte Carlo Approximation of Bootstrap Variances , 1998 .

[5]  Jessica C. Thompson,et al.  On bad terms: Problems and solutions within zooarchaeological bone surface modification studies , 2015 .

[6]  Brett Lantz,et al.  Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications , 2013 .

[7]  Jessica C. Thompson,et al.  The trajectory of bone surface modification studies in paleoanthropology and a new Bayesian solution to the identification controversy. , 2017, Journal of human evolution.

[8]  A. Rosas,et al.  Changing competition dynamics among predators at the late Early Pleistocene site Barranc de la Boella (Tarragona, Spain) , 2017 .

[9]  M. Domínguez‐Rodrigo,et al.  An experimental study of the patterned nature of anthropogenic bone breakage and its impact on bone surface modification frequencies , 2018, Journal of Archaeological Science.

[10]  J. Yravedra,et al.  A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions , 2013 .

[11]  J. Arsuaga,et al.  Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus) , 2014 .

[12]  J. Yravedra,et al.  An experimental lion-to-hammerstone model and its relevance to understand hominin-carnivore interactions in the archeological record , 2016 .

[13]  R. Blumenschine An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages , 1988 .

[14]  Virginia Alcántara García,et al.  Determinación de procesos de fractura sobre huesos frescos: un sistema de análisis de los ángulos de los planos de fracturación como discriminador de agentes bióticos , 2006 .

[15]  T. Pickering Reconsideration of criteria for differentiating faunal assemblages accumulated by hyenas and hominids , 2002 .

[16]  Paola Villa,et al.  Breakage patterns of human long bones , 1991 .

[17]  M. Voorhies,et al.  Spiral Fractures and Bone Pseudotools at Paleontological Sites , 1980, American Antiquity.

[18]  C. Beauval,et al.  Consommation osseuse des carnivores : résultats de l’étude de l’exploitation de carcasses de bœufs (Bos taurus) par des loups captifs , 2008 .

[19]  A. Turner,et al.  Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe , 2008 .

[20]  Jennifer A. Parkinson Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[21]  R. Kerr A cautionary note. , 1988, Science.

[22]  Anna K. Behrensmeyer,et al.  Taphonomic and ecologic information from bone weathering , 1978, Paleobiology.

[23]  Isabel Expósito,et al.  Fresh and heated bones breakage. An experimental approach , 2002 .

[24]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[25]  F. Bárcena,et al.  The wild (canis lupus) as a dispersal agent of animal carcasses in Northwestern Spain , 2012 .

[26]  M. Domínguez‐Rodrigo,et al.  Breaking Bones to Obtain Marrow: A Comparative Study between Percussion by Batting Bone on an Anvil and Hammerstone Percussion , 2014 .

[27]  M. Ferretti Evolution of bone-cracking adaptations in hyaenids (Mammalia, Carnivora) , 2007 .

[28]  G. Avery,et al.  Spotted, striped or brown? Taphonomic studies at dens of extant hyaenas in eastern and southern Africa , 2015 .

[29]  Charles P. Egeland,et al.  The contribution of limb bone fracture patterns to reconstructing early hominid behaviour at Swartkrans cave (South Africa): archaeological application of a new analytical method , 2005 .

[30]  Manuel Domínguez-Rodrigo,et al.  TESTING ANALOGICAL TAPHONOMIC SIGNATURES IN BONE BREAKING: A COMPARISON BETWEEN HAMMERSTONE-BROKEN EQUID AND BOVID BONES , 2011 .

[31]  M. Arriaza,et al.  When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites , 2016 .

[32]  T. Pickering,et al.  A multivariate approach for discriminating bone accumulations created by spotted Hyenas and Leopards: harnessing actualistic data from east and Southern Africa , 2010 .

[33]  F. Bárcena,et al.  A Taphonomic study of wild wolf (Canis lupus) Modification of horse bones in Northwestern Spain , 2011 .

[34]  A. Outram,et al.  Understanding complex fragmented assemblages of human and animal remains: a fully integrated approach , 2005 .

[35]  G. Haynes A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones , 1983, Paleobiology.

[36]  Robert J. Blumenschine,et al.  A Quantitative Diagnosis of Notches Made by Hammerstone Percussion and Carnivore Gnawing on Bovid Long Bones , 1994, American Antiquity.

[37]  M. Prendergast,et al.  Taphonomic Analyses of a Hyena Den and a Natural-Death Assemblage Near Lake Eyasi (Tanzania) , 2008 .

[38]  A. Outram A New Approach to Identifying Bone Marrow and Grease Exploitation: Why the “Indeterminate” Fragments should not be Ignored , 2001 .

[39]  G. Haynes,et al.  Frequencies of Spiral and Green-Bone Fractures on Ungulate Limb Bones in Modern Surface Assemblages , 1983, American Antiquity.

[40]  L. Binford Bones: Ancient Men and Modern Myths , 1981 .

[41]  J. Peterhans,et al.  Spotted hyena (Crocuta crocuta) den use and taphonomy in the Masai Mara National Reserve, Kenya , 2007 .

[42]  C. K. Brain The Hunters or the Hunted?: An Introduction to African Cave Taphonomy , 1983, Geological Magazine.

[43]  Z. J. Tseng,et al.  Mandibular biomechanics of Crocuta crocuta, Canis lupus, and the late Miocene Dinocrocuta gigantea (Carnivora, Mammalia) , 2010 .

[44]  J. Yravedra,et al.  Use and abuse of cut mark analyses: The Rorschach effect , 2017 .

[45]  Philippe Fosse,et al.  Los cubiles actuales de hiena: síntesis crítica de sus características tafonómicas a partir de la excavación de nuevos yacimientos (República de Djibuti, Africa del Sur) y la información publicada , 2009 .

[46]  Max Kuhn,et al.  Applied Predictive Modeling , 2013 .

[47]  M. Domínguez‐Rodrigo,et al.  A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages , 2009 .

[48]  A. Hérissé,et al.  Crassiangulina variacornuta sp. nov. from the late Llandovery and its bearing on Silurian and Devonian acritarch taxonomy , 2003 .

[49]  Max Kuhn,et al.  caret: Classification and Regression Training , 2015 .

[50]  R. Morlan Toward the Definition of Criteria for the Recognition of Artificial Bone Alterations , 1984, Quaternary Research.

[51]  Katrina Yezzi-Woodley,et al.  New analytical methods for comparing bone fracture angles: A controlled study of hammerstone and hyena (Crocuta crocuta) long bone breakage , 2017 .

[52]  Buca d. Iena Comparative ecology and taphonomy of spotted hyenas , humans , and wolves in Pleistocene Italy , 2003 .

[53]  J. Yravedra,et al.  A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania) , 2015 .

[54]  M. M. Selvaggio Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications , 1994 .

[55]  A. Outram,et al.  Tracking changes in bone fracture morphology over time: environment, taphonomy, and the archaeological record , 2012 .

[56]  R. Blumenschine,et al.  Validation of bone surface modification models for inferring fossil hominin and carnivore feeding interactions, with reapplication to FLK 22, Olduvai Gorge, Tanzania. , 2012, Journal of human evolution.

[57]  L. Werdelin Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae) , 1989, Paleobiology.

[58]  M. Domínguez‐Rodrigo Hunting and Scavenging by Early Humans: The State of the Debate , 2002 .

[59]  J. Yravedra,et al.  Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis , 2009 .

[60]  A. Rosas,et al.  Tumbling effects on bone surface modifications (BSM): An experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain) , 2019, Journal of Archaeological Science.

[61]  C. Egeland,et al.  Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene , 2018, Proceedings of the National Academy of Sciences.

[62]  Michael J. Rogers,et al.  Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world's oldest stone tools. , 2005, Journal of human evolution.

[63]  Manuel Domínguez-Rodrigo,et al.  Distinguishing butchery cut marks from crocodile bite marks through machine learning methods , 2018, Scientific Reports.

[64]  Charles P. Egeland,et al.  Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans , 2006 .

[65]  J. Yravedra,et al.  The larger mammal palimpsest from TK (Thiongo Korongo), Bed II, Olduvai Gorge, Tanzania , 2016 .

[66]  E. White,et al.  Chemical Weathering of Bone in Archaeological Soils , 1983, American Antiquity.

[67]  J. Yravedra,et al.  Bone modification by modern wolf (canis lupus): a taphonomy study from their natural feeding places , 2012 .

[68]  Bootstrap confidence regions for correspondence analysis , 2012 .

[69]  C. Egeland,et al.  Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites , 2007 .

[70]  Mario Bunge,et al.  ANALOGY BETWEEN SYSTEMS , 1981 .

[71]  L. Snyder,et al.  Canid modification of human remains: implications for time-since-death estimations. , 1989, Journal of forensic sciences.

[72]  M. Domínguez‐Rodrigo,et al.  Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology , 2015 .

[73]  P. Saladié,et al.  The Middle Pleistocene site of Torralba (Soria, Spain): a taphonomic view of the Marquis of Cerralbo and Howell faunal collections , 2018, Archaeological and Anthropological Sciences.

[74]  Eileen Johnson,et al.  Current Developments in Bone Technology , 1985 .

[75]  M. Domínguez‐Rodrigo Taphonomy in early African archaeological sites: Questioning some bone surface modification models for inferring fossil hominin and carnivore feeding interactions , 2015 .

[76]  Manuel Domínguez-Rodrigo,et al.  Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? , 2018, Archaeological and Anthropological Sciences.