Chance constrained sets approximation: A probabilistic scaling approach - EXTENDED VERSION

In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-contrained sets is proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating sets of given complexity. A probabilistic scaling procedure then allows to rescale these sets to obtain the desired probabilistic guarantees. The proposed approach is shown to be applicable in several problem in systems and control, such as the design of Stochastic Model Predictive Control schemes or the solution of probabilistic set membership estimation problems.

[1]  Jérôme Malick,et al.  Eventual convexity of probability constraints with elliptical distributions , 2019, Math. Program..

[2]  Constantino M. Lagoa,et al.  Randomized Approximations of the Image Set of Nonlinear Mappings with Applications to Filtering , 2015, ArXiv.

[3]  Mario Sznaier,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..

[4]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[5]  Fabrizio Dabbene,et al.  Computationally efficient stochastic MPC: a probabilistic scaling approach , 2020, 2020 IEEE Conference on Control Technology and Applications (CCTA).

[6]  András Prékopa,et al.  Serially Linked Reservoir System Design Using Stochastic Programing , 1978 .

[7]  S. Kataoka A Stochastic Programming Model , 1963 .

[8]  John Lygeros,et al.  On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems , 2014, IEEE Transactions on Automatic Control.

[9]  Le Xie,et al.  Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization , 2019, Annu. Rev. Control..

[10]  René Henrion,et al.  Convexity of chance constraints with independent random variables , 2008, Comput. Optim. Appl..

[11]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[12]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[13]  Jean B. Lasserre,et al.  Representation of Chance-Constraints With Strong Asymptotic Guarantees , 2017, IEEE Control Systems Letters.

[14]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[15]  Elisa Capello,et al.  Sample-Based SMPC for Tracking Control of Fixed-Wing UAV , 2018, IEEE Control Systems Letters.

[16]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[17]  René Henrion,et al.  Probabilistic constraints via SQP solver: application to a renewable energy management problem , 2014, Comput. Manag. Sci..

[18]  R. Wets,et al.  Stochastic programming , 1989 .

[19]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[20]  Darinka Dentcheva,et al.  Dual methods for probabilistic optimization problems* , 2004, Math. Methods Oper. Res..

[21]  Frank Allgöwer,et al.  Stochastic MPC with offline uncertainty sampling , 2016, Autom..

[22]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[23]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[24]  Roberto Tempo,et al.  Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms , 2013, Autom..

[25]  Eduardo F. Camacho,et al.  Robust Design Through Probabilistic Maximization , 2018 .

[26]  François Margot,et al.  Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities , 2016, Oper. Res..

[27]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[28]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[29]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[30]  Miguel A. Lejeune,et al.  Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems , 2012, Oper. Res..

[31]  Eduardo F. Camacho,et al.  Bounded error identification of systems with time-varying parameters , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[32]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[33]  Vicenç Puig,et al.  Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies , 2010, Int. J. Appl. Math. Comput. Sci..

[34]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[35]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[36]  B. L. Miller,et al.  Chance Constrained Programming with Joint Constraints , 1965 .

[37]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[38]  Didier Dumur,et al.  Zonotopes: From Guaranteed State-estimation to Control , 2013 .

[39]  Lukas Hewing,et al.  On a Correspondence between Probabilistic and Robust Invariant Sets for Linear Systems , 2018, 2018 European Control Conference (ECC).

[40]  Eduardo F. Camacho,et al.  Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems , 2009, IEEE Transactions on Automatic Control.

[41]  Constantino M. Lagoa,et al.  Algorithms for Optimal AC Power Flow in the Presence of Renewable Sources , 2018, Wiley Encyclopedia of Electrical and Electronics Engineering.

[42]  Arkadi Nemirovski,et al.  On safe tractable approximations of chance constraints , 2012, Eur. J. Oper. Res..

[43]  Lukas Hewing,et al.  Stochastic Model Predictive Control for Linear Systems Using Probabilistic Reachable Sets , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[44]  W. van Ackooij Eventual convexity of chance constrained feasible sets , 2015 .

[45]  Constantino M. Lagoa,et al.  Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets , 2014, SIAM J. Optim..

[46]  Fabrizio Dabbene,et al.  Prediction Error Quantification Through Probabilistic Scaling , 2021, IEEE Control Systems Letters.

[47]  Masayoshi Tomizuka,et al.  Generic Tracking and Probabilistic Prediction Framework and Its Application in Autonomous Driving , 2019, IEEE Transactions on Intelligent Transportation Systems.

[48]  Fabrizio Dabbene,et al.  Probabilistically Robust AC Optimal Power Flow , 2019, IEEE Transactions on Control of Network Systems.

[49]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[50]  Frank Allgöwer,et al.  Constraint-Tightening and Stability in Stochastic Model Predictive Control , 2015, IEEE Transactions on Automatic Control.

[51]  Fabrizio Dabbene,et al.  Safe approximations of chance constrained sets by probabilistic scaling , 2019, 2019 18th European Control Conference (ECC).

[52]  Mark Cannon,et al.  Stochastic Model Predictive Control with Discounted Probabilistic Constraints , 2018, 2018 European Control Conference (ECC).

[53]  Constantino M. Lagoa,et al.  Simple approximations of semialgebraic sets and their applications to control , 2015, Autom..

[54]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[55]  Patrizia Beraldi,et al.  A branch and bound method for stochastic integer problems under probabilistic constraints , 2002, Optim. Methods Softw..

[56]  Shabbir Ahmed,et al.  Relaxations and approximations of chance constraints under finite distributions , 2018, Mathematical Programming.

[57]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[58]  András Prékopa,et al.  Relaxations for probabilistically constrained stochastic programming problems: review and extensions , 2018, Annals of Operations Research.

[59]  Constantino Lagoa,et al.  On the convexity of probabilistically constrained linear programs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[60]  Mohammad Ahsanullah,et al.  An Introduction to Order Statistics , 2013 .

[61]  Eugene H. Gover,et al.  Determinants and the volumes of parallelotopes and zonotopes , 2010 .

[62]  Frank Allgöwer,et al.  An Offline-Sampling SMPC Framework with Application to Automated Space Maneuvers , 2018, ArXiv.

[63]  L. Khachiyan COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The problem of calculating the volume of a polyhedron is enumerably hard , 1989 .

[64]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[65]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[66]  Constantino M. Lagoa,et al.  On the complexity of randomized approximations of nonconvex sets , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.