Effects of edge dislocations on thermal transport in UO2

Abstract Molecular-dynamics simulations are used to characterize the effects of dislocations on the thermal transport properties of UO 2 . Microstructures with various dislocation densities of the order of 10 16  m −2 are simulated at temperatures between 800 and 1600 K. The effects of dislocations on the thermal-transport properties are found to be independent on temperature, consistent with the classic Klemens–Callaway analysis. The effect of dislocation density is also quantified. The simulation results are also fit to the pertinent part of the empirical formula for the thermal conductivity used in the FRAPCON fuel-performance code, which gives the overall effects of temperature and dislocation effects on thermal conductivity. The fitted results can be well-described within this formalism, indicating that the results of molecular-dynamics simulations can be used as a reliable source of parameters for models at longer length scales.

[1]  H. Matzke,et al.  An electron microscopy study of the RIM structure of a UO2 fuel with a high burnup of 7.9% FIMA , 1997 .

[3]  M. S. Veshchunov,et al.  Model for evolution of crystal defects in UO2 under irradiation up to high burn-ups , 2009 .

[4]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[5]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[6]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part II: Molecular dynamics simulations , 2008 .

[7]  D. D. Lanning,et al.  FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup , 1997 .

[8]  C. L. Bishop,et al.  Strain fields and line energies of dislocations in uranium dioxide , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  James S. Tulenko,et al.  Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .

[10]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[11]  H. Thiele,et al.  Transmission electron microscopy study of fission product behaviour in high burnup UO2 , 1992 .

[12]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[13]  Kazuhiro Nogita,et al.  Radiation-induced microstructural change in high burnup UO2 fuel pellets , 1994 .

[14]  R. C. Perrin,et al.  COMPUTER SIMULATION OF DISLOCATIONS , 1974 .

[15]  James S. Tulenko,et al.  Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation , 2011 .

[16]  R. Ham The determination of dislocation densities in thin films , 1961 .

[17]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[18]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[19]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[20]  A. Balandin,et al.  Effect of dislocations on thermal conductivity of GaN layers , 2001 .

[21]  John F. Muth,et al.  Accurate dependence of gallium nitride thermal conductivity on dislocation density , 2006 .

[22]  K. Une,et al.  High resolution TEM of high burnup UO2 fuel , 1997 .

[23]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[24]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[25]  S. Sinnott,et al.  Critical assessment of UO2 classical potentials for thermal conductivity calculations , 2012, Journal of Materials Science.

[26]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[27]  James S. Tulenko,et al.  Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .