Modified minimum-distance criterion for blended random and nonrandom encoding.

Two pixel-oriented methods for designing Fourier transform holograms--pseudorandom encoding and minimum-distance encoding-usually produce higher-fidelity reconstructions when combined than those produced by each method individually. In previous studies minimum-distance encoding was defined as the mapping from the desired complex value to the closest value produced by the modulator. This method is compared with a new minimum-distance criterion in which the desired complex value is mapped to the closest value that can be realized by pseudorandom encoding. Simulations and experimental measurements using quantized phase and amplitude modulators show that the modified approach to blended encoding produces more faithful reconstructions than those of the previous method.

[1]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[2]  J W Goodman,et al.  Optimal maximum correlation filter for arbitrarily constrained devices. , 1989, Applied optics.

[3]  H H Arsenault,et al.  Phase calibration and applications of a liquid-crystal spatial light modulator. , 1995, Applied optics.

[4]  M Duelli,et al.  Ternary pseudorandom encoding of Fourier transform holograms. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  J Campos,et al.  Computation of arbitrarily constrained synthetic discriminant functions. , 1995, Applied optics.

[6]  R. Juday Optimal realizable filters and the minimum Euclidean distance principle. , 1993, Applied optics.

[7]  M Liang,et al.  Random phase encoding of composite fully complex filters. , 1996, Optics letters.

[8]  R. Cohn,et al.  Pseudorandom phase-only encoding of real-time spatial light modulators. , 1996, Applied optics.

[9]  M P Dames,et al.  Efficient optical elements to generate intensity weighted spot arrays: design and fabrication. , 1991, Applied optics.

[10]  J. Horner,et al.  Phase-only matched filtering. , 1984, Applied optics.

[11]  N. C. Gallagher,et al.  Method for Computing Kinoforms that Reduces Image Reconstruction Error. , 1973, Applied optics.

[12]  Joseph P. Kirk,et al.  Phase-Only Complex-Valued Spatial Filter* , 1971 .

[13]  U Krackhardt,et al.  Upper bound on the diffraction efficiency of phase-only fanout elements. , 1992, Applied optics.

[14]  Wenyao Liu,et al.  Pseudorandom encoding of fully complex modulation to biamplitude phase modulators , 1996 .

[15]  Robert W. Cohn,et al.  Fully complex diffractive optics by means of patterned diffuser arrays: encoding concept and implications for fabrication , 1997 .

[16]  M Liang,et al.  Approximating fully complex spatial modulation with pseudorandom phase-only modulation. , 1994, Applied optics.

[17]  Robert W. Cohn,et al.  Pseudorandom encoding of complex-valued functions onto amplitude-coupled phase modulators , 1998 .

[18]  R. Juday Correlation with a spatial light modulator having phase and amplitude cross coupling. , 1989, Applied optics.

[19]  Henry Stark,et al.  Design of phase gratings by generalized projections , 1991 .

[20]  J Bengtsson Kinoform design with an optimal-rotation-angle method. , 1994, Applied optics.

[21]  Richard D. Juday,et al.  HOLOMED: an algorithm for computer-generated holograms , 1996, Defense, Security, and Sensing.

[22]  Robert W. Cohn Analyzing the encoding range of amplitude-phase coupled spatial light modulators , 1999 .

[23]  Wai-Hon Lee,et al.  III Computer-Generated Holograms: Techniques and Applications , 1978 .

[24]  G. M. Morris,et al.  Characteristics of a 128 x 128 liquid-crystal spatial light modulator for wave-front generation. , 1998, Optics letters.

[25]  Eric G. Johnson,et al.  Microgenetic-algorithm optimization methods applied to dielectric gratings , 1995 .

[26]  A. Lohmann,et al.  Complex spatial filtering with binary masks. , 1966, Applied optics.

[27]  Joseph N. Mait,et al.  Understanding diffractive optical design in the scalar domain , 1995, OSA Annual Meeting.