Efficient algorithms for membership in boolean hierarchies of regular languages
暂无分享,去创建一个
Christian Glaßer | Victor L. Selivanov | Heinz Schmitz | V. Selivanov | Christian Glaßer | Heinz Schmitz
[1] P. Dangerfield. Logic , 1996, Aristotle and the Stoics.
[2] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[3] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[4] Pascal Weil,et al. Algebraic Recognizability of Languages , 2004, MFCS.
[5] Denis Thérien,et al. Programs over semigroups of dot-depth one , 2000, Theor. Comput. Sci..
[6] Heinz Schmitz,et al. The forbidden pattern approach to concatenation hierarchies , 2000 .
[7] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[8] Klaus W. Wagner,et al. The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy , 1998, ArXiv.
[9] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[10] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[11] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[12] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[13] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[14] Howard Straubing,et al. First Order Formulas with Modular Ppredicates , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[15] Christian Glaßer,et al. Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.
[16] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[17] BarringtonDavid A. Mix,et al. Regular languages in NC1 , 1992 .
[18] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..
[19] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.
[20] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[21] R. McNaughton. Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.
[22] Howard Straubing,et al. Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..
[23] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[24] Klaus W. Wagner,et al. The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..
[25] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[26] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[27] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[28] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[29] Christian Glaßer,et al. Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.
[30] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[31] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[32] Christian Glaßer,et al. Languages of Dot-Depth 3/2 , 2000, Theory of Computing Systems.
[33] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[34] Robert Knast,et al. A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..
[35] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[36] S. Sieber. On a decision method in restricted second-order arithmetic , 1960 .
[37] Christian Glaßer,et al. Languages polylog-time reducible to dot-depth 1/2 , 2007, J. Comput. Syst. Sci..
[38] Eric Pin,et al. Finite semigroups and recognizable languages: an introduction , 2002 .
[39] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[40] J. Pin,et al. THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .
[41] Juris Hartmanis,et al. The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..
[42] Jean-Éric Pin,et al. Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.
[43] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..
[44] Jacques Stern,et al. Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..