Efficient algorithms for membership in boolean hierarchies of regular languages

The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level $Sigma_1$ of the dot-depth hierarchy are decidable in $NL$ (previously only the decidability was known). The same remains true if predicates mod $d$ for fixed $d$ are allowed. - If modular predicates for arbitrary $d$ are allowed, then the classes of the Boolean hierarchy over level $Sigma_1$ are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level $Sigma_2$ of the Straubing-Th{'\e}rien hierarchy are decidable in $NL$. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for $NL$. - The membership problems for quasi-aperiodic languages and for $d$-quasi-aperiodic languages are logspace many-one complete for $PSPACE$.

[1]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[2]  Christian Glaßer,et al.  The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..

[3]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[4]  Pascal Weil,et al.  Algebraic Recognizability of Languages , 2004, MFCS.

[5]  Denis Thérien,et al.  Programs over semigroups of dot-depth one , 2000, Theor. Comput. Sci..

[6]  Heinz Schmitz,et al.  The forbidden pattern approach to concatenation hierarchies , 2000 .

[7]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[8]  Klaus W. Wagner,et al.  The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy , 1998, ArXiv.

[9]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[10]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[11]  Victor L. Selivanov A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.

[12]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[13]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[14]  Howard Straubing,et al.  First Order Formulas with Modular Ppredicates , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[15]  Christian Glaßer,et al.  Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.

[16]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[17]  BarringtonDavid A. Mix,et al.  Regular languages in NC1 , 1992 .

[18]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[19]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[20]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[21]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[22]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[23]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[24]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[25]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[26]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[27]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[28]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[29]  Christian Glaßer,et al.  Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.

[30]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[31]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[32]  Christian Glaßer,et al.  Languages of Dot-Depth 3/2 , 2000, Theory of Computing Systems.

[33]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[34]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[35]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[36]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[37]  Christian Glaßer,et al.  Languages polylog-time reducible to dot-depth 1/2 , 2007, J. Comput. Syst. Sci..

[38]  Eric Pin,et al.  Finite semigroups and recognizable languages: an introduction , 2002 .

[39]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[40]  J. Pin,et al.  THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .

[41]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[42]  Jean-Éric Pin,et al.  Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.

[43]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[44]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..