Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas

We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to the original scheme.

[1]  Lorenzo Pareschi,et al.  Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics , 2004 .

[2]  Giacomo Dimarco,et al.  A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..

[3]  K. Nanbu,et al.  THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .

[4]  Giacomo Dimarco,et al.  Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..

[5]  W. X. Wang,et al.  Vector Implementation of Nonlinear Monte Carlo Coulomb Collisions , 1996 .

[6]  Yanghong Huang,et al.  Understanding the accuracy of Nanbu's numerical Coulomb collision operator , 2009, J. Comput. Phys..

[7]  Lorenzo Pareschi,et al.  Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..

[8]  H. Neunzert,et al.  On a simulation scheme for the Boltzmann equation , 1986 .

[9]  Nanbu,et al.  Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  H. Wilhelmsson,et al.  Review of plasma physics: Vol. 1 (ed. M. A. Leontovich, Consultants Bureau, New York, 1965) pp. 326, $ 12.50 , 1966 .

[11]  T. Takizuka,et al.  A binary collision model for plasma simulation with a particle code , 1977 .

[12]  Kenichi Nanbu,et al.  Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .

[13]  L. Pareschi,et al.  HYBRID MULTISCALE METHODS I. HYPERBOLIC RELAXATION PROBLEMS∗ , 2006 .

[14]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[15]  Bruce I. Cohen,et al.  Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu , 2008, J. Comput. Phys..

[16]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[17]  Giacomo Dimarco,et al.  Hybrid multiscale methods for hyperbolic problems I. Hyperbolic relaxation problems , 2006 .

[18]  J. Bittencourt Fundamentals of plasma physics , 1986 .

[19]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[20]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .