Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression

[1]  Yan-Kai Tzeng,et al.  Synthesis of Atomically Thin Hexagonal Diamond with Compression. , 2020, Nano letters.

[2]  Omar P. Vilela Neto,et al.  Raman spectroscopy analysis of number of layers in mass-produced graphene flakes , 2020 .

[3]  A. P. Santos,et al.  A semi-automated general statistical treatment of graphene systems , 2020, 2D Materials.

[4]  R. D. Rodriguez,et al.  The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. , 2019, Physical chemistry chemical physics : PCCP.

[5]  K. Momeni,et al.  Mechanochemistry of Stable Diamane and Atomically Thin Diamond Films Synthesis from Bi- and Multilayer Graphene: A Computational Study , 2019, The Journal of Physical Chemistry C.

[6]  H. Mao,et al.  Large bandgap of pressurized trilayer graphene , 2019, Proceedings of the National Academy of Sciences.

[7]  P. Puech,et al.  Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films , 2019, Carbon.

[8]  E. Riedo,et al.  Layer dependence of graphene-diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning , 2019, 2D Materials.

[9]  R. Ruoff,et al.  Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond , 2019, Nature Nanotechnology.

[10]  B. Neves,et al.  Compression-Induced Modification of Boron Nitride Layers: A Conductive Two-Dimensional BN Compound. , 2018, ACS nano.

[11]  E. Riedo,et al.  Ultrahard carbon film from epitaxial two-layer graphene , 2018, Nature Nanotechnology.

[12]  J. Kong,et al.  Raman evidence for pressure-induced formation of diamondene , 2017, Nature Communications.

[13]  S. Reich,et al.  Precise determination of graphene functionalization by in situ Raman spectroscopy , 2017, Nature Communications.

[14]  Zhi-Pan Liu,et al.  Graphite to Diamond: Origin for Kinetics Selectivity. , 2017, Journal of the American Chemical Society.

[15]  Bo Xu,et al.  Recent Advances in Superhard Materials , 2016 .

[16]  Kenji Watanabe,et al.  Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. , 2015, Nano letters.

[17]  P. Sorokin,et al.  Converting Chemically Functionalized Few-Layer Graphene to Diamond Films: A Computational Study , 2015 .

[18]  G. Kalosakas,et al.  Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media , 2013 .

[19]  Yuejian Wang,et al.  Crystal structure of graphite under room-temperature compression and decompression , 2012, Scientific Reports.

[20]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[21]  Konrad Herrmann,et al.  Hardness Testing: Principles and Applications , 2011 .

[22]  S. Goedecker,et al.  Crystal structure of cold compressed graphite. , 2011, Physical review letters.

[23]  B. Neves,et al.  Room‐Temperature Compression‐Induced Diamondization of Few‐Layer Graphene , 2011, Advanced materials.

[24]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[25]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[26]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[27]  Yoshiyuki Kawazoe,et al.  Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon , 2011 .

[28]  L. Chernozatonskii,et al.  Influence of Size Effect on the Electronic and Elastic Properties of Diamond Films with Nanometer Thickness , 2011, 1103.6210.

[29]  M. M. Lucchese,et al.  Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder , 2010 .

[30]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[31]  J. Coleman,et al.  High-pressure Raman spectroscopy of graphene , 2009 .

[32]  Hugen Yan,et al.  Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[33]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[34]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[35]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[36]  S. Louie,et al.  Structural and electronic properties of carbon in hybrid diamond-graphite structures , 2005 .

[37]  V. Crespi,et al.  Collective stabilization of hydrogen chemisorption on graphenic surfaces , 2003 .

[38]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[39]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[40]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[41]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[42]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[43]  M. Hanfland,et al.  EQUATION OF STATE OF ICE VII UP TO 106 GPA , 1997 .

[44]  J. Badding,et al.  Quenchable Transparent Phase of Carbon , 1997 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  I. Hutchings,et al.  The rôle of particle properties in the erosion of brittle materials , 1996 .

[47]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[48]  Utsumi,et al.  High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. , 1992, Physical review. B, Condensed matter.

[49]  Wataru Utsumi And Takehiko Yagi,et al.  Light-Transparent Phase Formed by Room-Temperature Compression of Graphite , 1991, Science.

[50]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[51]  Syassen,et al.  Optical reflectivity of graphite under pressure. , 1989, Physical review. B, Condensed matter.

[52]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[53]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[54]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[55]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[56]  Stanley Block,et al.  Hydrostatic limits in liquids and solids to 100 kbar , 1973 .

[57]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[58]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[59]  H G Drickamer,et al.  Carbon: A New Crystalline Phase , 1963, Science.

[60]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[61]  P. Puech,et al.  Towards a better understanding of the structure of diamanoïds and diamanoïd/graphene hybrids , 2020 .

[62]  A. G. S. Filho,et al.  Raman scattering studies of graphene under high pressure , 2017 .

[63]  Yoshiyuki Kawazoe,et al.  Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. , 2011, Physical review letters.

[64]  John W. Anthony,et al.  Handbook of mineralogy , 1990 .

[65]  P. M. Halleck,et al.  Compression and bonding of ice VII and an empirical linear expression for the isothermal compression of solids , 1975 .

[66]  S. J. PERRY,et al.  Low Temperature , 1881, Nature.