Bayesian analysis of penalized quantile regression for longitudinal data

This paper considers penalized quantile regression model for random effects longitudinal data from a Bayesian perspective. The introduction of a large number of individual random effects can significantly inflate the variability of estimates of other covariate effects. To modify this inflation effect a hierarchical Bayesian model is introduced to shrink the individual effects toward the common population values by using the Lasso and adaptive Lasso penalties in the quantile regression check function. A Gibbs sampling algorithm is developed to simulate the parameters from the posterior distributions. The simulation studies and real data analysis indicate that the proposed methods generally perform better in comparison to the other approaches.

[1]  Lixin Song,et al.  Adaptive Lasso Variable Selection for the Accelerated Failure Models , 2011 .

[2]  H. Lian,et al.  Bayesian quantile regression for longitudinal data models , 2012 .

[3]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[4]  M. Arellano,et al.  Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations , 1991 .

[5]  Julian Stander,et al.  Bayesian analysis of a Tobit quantile regression model , 2007 .

[6]  Hu Yang,et al.  Penalized weighted composite quantile estimators with missing covariates , 2016 .

[7]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[8]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[9]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[10]  R. Koenker Quantile Regression: Name Index , 2005 .

[11]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[12]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[13]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[14]  R. Koenker Quantile regression for longitudinal data , 2004 .

[15]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[16]  Dries F. Benoit,et al.  Bayesian adaptive Lasso quantile regression , 2012 .