A Butterfly-Accelerated Volume Integral Equation Solver for Broad Permittivity and Large-Scale Electromagnetic Analysis

A butterfly-accelerated volume integral equation (VIE) solver is proposed for fast and accurate electromagnetic (EM) analysis of scattering from heterogeneous objects. The proposed solver leverages the hierarchical off-diagonal butterfly (HOD-BF) scheme to construct the system matrix and obtain its approximate inverse, used as a preconditioner. Complexity analysis and numerical experiments validate the O(N log N) construction cost of the HOD-BF-compressed system matrix and O(N logN) inversion cost for the preconditioner, where N is the number of unknowns in the high-frequency EM scattering problem. For many practical scenarios, the proposed VIE solver requires less memory and computational time to construct the system matrix and obtain its approximate inverse compared to a H matrix-accelerated VIE solver. The accuracy and efficiency of the proposed solver have been demonstrated via its application to the EM analysis of large-scale canonical and real-world structures comprising of broad permittivity values and involving millions of unknowns.

[1]  Eric Michielssen,et al.  An HSS Matrix-Inspired Butterfly-Based Direct Solver for Analyzing Scattering From Two-Dimensional Objects , 2016, IEEE Antennas and Wireless Propagation Letters.

[2]  Matthys M. Botha,et al.  Solving the volume integral equations of electromagnetic scattering , 2006, J. Comput. Phys..

[3]  Miaomiao Ma,et al.  Accuracy Directly Controlled Fast Direct Solution of General ${\mathcal{ H}}^{2}$ -Matrices and Its Application to Solving Electrodynamic Volume Integral Equations , 2018, IEEE Transactions on Microwave Theory and Techniques.

[4]  Jacob K. White,et al.  VoxCap: FFT-Accelerated and Tucker-Enhanced Capacitance Extraction Simulator for Voxelized Structures , 2020, IEEE Transactions on Microwave Theory and Techniques.

[5]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[6]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[7]  K. Sertel,et al.  On volume integral equations , 2006, IEEE Transactions on Antennas and Propagation.

[8]  Internally Combined Volume-Surface Integral Equation for a 3-D Electromagnetic Scattering Analysis of High-Contrast Media , 2017, IEEE Antennas and Wireless Propagation Letters.

[9]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.

[10]  Per-Gunnar Martinsson,et al.  An O(N) Direct Solver for Integral Equations on the Plane , 2013, 1303.5466.

[11]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[12]  Caicheng Lu A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes , 2003 .

[13]  Jin-Fa Lee,et al.  A low-rank IE-QR algorithm for matrix compression in volume integral equations , 2004, IEEE Transactions on Magnetics.

[14]  Jun Hu,et al.  On MLMDA/Butterfly Compressibility of Inverse Integral Operators , 2013, IEEE Antennas and Wireless Propagation Letters.

[15]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[16]  Yang Liu,et al.  Butterfly factorization via randomized matrix-vector multiplications , 2020, SIAM J. Sci. Comput..

[17]  X. Sheng,et al.  Fast direct solution of 3‐D volume integral equations by skeletonization for dynamic electromagnetic wave problems , 2019, International journal of numerical modelling.

[18]  Jun Hu,et al.  A butterfly‐based direct solver using hierarchical LU factorization for Poggio‐Miller‐Chang‐Harrington‐Wu‐Tsai equations , 2018 .

[19]  Kenneth L. Ho,et al.  Interpolative Decomposition Butterfly Factorization , 2018, SIAM J. Sci. Comput..

[20]  Dan Jiao,et al.  An �-Matrix-Based Integral-Equation Solver of Reduced Complexity and Controlled Accuracy for Solving Electrodynamic Problems , 2009 .

[21]  Weng Cho Chew,et al.  The use of Huygens' equivalence principle for solving 3-D volume integral equation of scattering , 1993 .

[22]  Luis J. Gomez,et al.  Low-Frequency Stable Internally Combined Volume-Surface Integral Equation for High-Contrast Scatterers , 2015, IEEE Antennas and Wireless Propagation Letters.

[23]  P. Ylä‐Oijala,et al.  Numerical comparison of spectral properties of volume-integral-equation formulations , 2016 .

[24]  J. Kottmann,et al.  Accurate solution of the volume integral equation for high-permittivity scatterers , 2000 .

[25]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[26]  V. Okhmatovski,et al.  H-Matrix Arithmetic for Fast Direct and Iterative Method of Moment Solution of Surface-Volume-Surface EFIE for 3-D Radiation Problems , 2018 .

[27]  Jacob K. White,et al.  Circulant preconditioning in the volume integral equation method for silicon photonics. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Neil V. Budko,et al.  Spectrum of the Volume Integral Operator of Electromagnetic Scattering , 2006, SIAM J. Sci. Comput..

[29]  James Bremer,et al.  Rapid Application of the Spherical Harmonic Transform via Interpolative Decomposition Butterfly Factorization , 2020, SIAM Journal on Scientific Computing.

[30]  W. Chew,et al.  Nepal—an algorithm for solving the volume integral equation , 1993 .

[31]  Le-Wei Li,et al.  Precorrected-FFT solution of the volume Integral equation for 3-D inhomogeneous dielectric objects , 2005, IEEE Transactions on Antennas and Propagation.

[32]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[33]  Amir Boag,et al.  Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems , 1994 .

[34]  Lexing Ying,et al.  Butterfly Factorization , 2015, Multiscale Model. Simul..

[35]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[36]  Caicheng Lu,et al.  Analysis of Volume Integral Equation Formulations for Scattering by High-Contrast Penetrable Objects , 2012, IEEE Transactions on Antennas and Propagation.

[37]  G. Franceschetti,et al.  On the spatial bandwidth of scattered fields , 1987 .

[38]  M. Costabel,et al.  The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body , 2012 .

[39]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[40]  Yang Liu,et al.  A parallel hierarchical blocked adaptive cross approximation algorithm , 2019 .

[41]  Y. Brick Increasing the Butterfly-Compressibility of Moment Matrix Blocks: A Quantitative Study , 2021, IEEE Transactions on Antennas and Propagation.

[42]  J. Shaeffer,et al.  Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1 M Unknowns , 2008, IEEE Transactions on Antennas and Propagation.

[43]  Zheng Zhang,et al.  Sparsity-Aware Precorrected Tensor Train Algorithm for Fast Solution of 2-D Scattering Problems and Current Flow Modeling on Unstructured Meshes , 2019, IEEE Transactions on Microwave Theory and Techniques.

[44]  V. Okhmatovski,et al.  Surface–Volume–Surface EFIE Formulation for Fast Direct Solution of Scattering Problems on General 3-D Composite Metal–Dielectric Objects , 2020, IEEE Transactions on Antennas and Propagation.

[45]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.

[46]  Haizhao Yang,et al.  A hierarchical butterfly LU preconditioner for two-dimensional electromagnetic scattering problems involving open surfaces , 2019, J. Comput. Phys..

[47]  W. Chai,et al.  H- and H 2 -matrix-based fast integral-equation solvers for large-scale electromagnetic analysis , 2010 .

[48]  Pieter Ghysels,et al.  Sparse Approximate Multifrontal Factorization with Butterfly Compression for High Frequency Wave Equations , 2020, SIAM Journal on Scientific Computing.

[49]  Yingzhou Li,et al.  Interpolative Butterfly Factorization , 2016, SIAM J. Sci. Comput..

[50]  Jun Hu,et al.  A Butterfly-Based Direct Integral-Equation Solver Using Hierarchical LU Factorization for Analyzing Scattering From Electrically Large Conducting Objects , 2016, IEEE Transactions on Antennas and Propagation.

[51]  Eric Michielssen,et al.  The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis , 2018, IEEE Transactions on Biomedical Engineering.

[52]  D. Wilton,et al.  A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies , 1984 .

[53]  J. Shaeffer HODLR direct MOM solver , 2018, 2018 International Applied Computational Electromagnetics Society Symposium (ACES).

[54]  K. Sertel,et al.  Multilevel fast multipole method solution of volume integral equations using parametric geometry modeling , 2001, IEEE Transactions on Antennas and Propagation.

[55]  Michael O'Neil,et al.  An algorithm for the rapid evaluation of special function transforms , 2010 .

[56]  Jacob K. White,et al.  A precorrected-FFT method for electrostatic analysis of complicated 3-D structures , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[57]  Dan Jiao,et al.  A Linear Complexity Direct Volume Integral Equation Solver for Full-Wave 3-D Circuit Extraction in Inhomogeneous Materials , 2015, IEEE Transactions on Microwave Theory and Techniques.

[58]  Luis J. Gomez,et al.  Internally Combined Volume-Surface Integral Equation for EM Analysis of Inhomogeneous Negative Permittivity Plasma Scatterers , 2018, IEEE Transactions on Antennas and Propagation.

[59]  Hongkai Zhao,et al.  Approximate Separability of the Green's Function of the Helmholtz Equation in the High Frequency Limit , 2018 .