Photocatalytic removal of tetracycline using TiO2/Ge composite optimized by response surface methodology (RSM)

[1]  Zewei Yang,et al.  Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite , 2016 .

[2]  Q. Guan,et al.  Preparation and characterization of Ag2O/SWNTs photocatalysts and its photodegradation on tetracycline , 2015 .

[3]  M. Topal,et al.  Removal of tetracycline and the degradation products by Lemna gibba L. exposed to secondary effluents , 2015 .

[4]  Sung Su Kim,et al.  Optimization of the TiO2/Ge composition by the response surface method of photocatalytic degradation under ultraviolet-A irradiation and the toxicity reduction of amoxicillin , 2015 .

[5]  Dong-mei Zhou,et al.  Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. , 2013, Chemosphere.

[6]  T. Grygar,et al.  Ge4+ doped TiO2 for stoichiometric degradation of warfare agents. , 2012, Journal of hazardous materials.

[7]  Vera Homem,et al.  Degradation and removal methods of antibiotics from aqueous matrices--a review. , 2011, Journal of environmental management.

[8]  T. Lim,et al.  C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation , 2011 .

[9]  M. Chaudhuri,et al.  The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment , 2011 .

[10]  Sarit K. Das,et al.  Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: crucial role of enhanced thermal conductivity , 2010, Nanotechnology.

[11]  Ching-Hua Huang,et al.  Adsorption and transformation of tetracycline antibiotics with aluminum oxide. , 2010, Chemosphere.

[12]  J. Martínez,et al.  Environmental pollution by antibiotics and by antibiotic resistance determinants. , 2009, Environmental pollution.

[13]  Antoine Ghauch,et al.  Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. , 2009, Environmental pollution.

[14]  Jaka Sunarso,et al.  Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. , 2009, Water research.

[15]  A. Boxall,et al.  A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. , 2006, Chemosphere.

[16]  N. Voulvoulis,et al.  Predicted and measured concentrations for selected pharmaceuticals in UK rivers: implications for risk assessment. , 2006, Water research.

[17]  S. Mabury,et al.  An exposure assessment for selected pharmaceuticals within a watershed in Southern Ontario. , 2006, Chemosphere.

[18]  D. Barceló,et al.  Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. , 2006, Talanta.

[19]  S. Thiele-Bruhn,et al.  Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. , 2005, Chemosphere.

[20]  B. Halling‐Sørensen,et al.  Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. , 2000, Chemosphere.