Alanine Substitutions of Polar and Nonpolar Residues in the Amino-Terminal Domain of CCR5 Differently Impair Entry of Macrophage- and Dualtropic Isolates of Human Immunodeficiency Virus Type 1

ABSTRACT Multiple extracellular domains of the CC-chemokine receptor CCR5 are important for its function as a human immunodeficiency virus type 1 (HIV-1) coreceptor. We have recently demonstrated by alanine scanning mutagenesis that the negatively charged residues in the CCR5 amino-terminal domain are essential for gp120 binding and coreceptor function. We have now extended our analysis of this domain to include most polar and nonpolar amino acids. Replacement of alanine with all four tyrosine residues and with serine-17 and cysteine-20 decrease or abolish gp120 binding and CCR5 coreceptor activity. Tyrosine-15 is essential for viral entry irrespective of the test isolate. Substitutions at some of the other positions impair the entry of dualtropic HIV-1 isolates more than that of macrophagetropic ones.

[1]  M. Akutsu,et al.  Host range mutant of human immunodeficiency virus type 1: modification of cell tropism by a single point mutation at the neutralization epitope in the env gene , 1991, Journal of virology.

[2]  J. Skilling,et al.  The maximum entropy method for data analysis (reply) , 1984, Nature.

[3]  D. Littman,et al.  Expression cloning of new receptors used by simian and human immunodeficiency viruses , 1997, Nature.

[4]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[5]  Richard A Koup,et al.  Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection , 1996, Cell.

[6]  William C. Olson,et al.  CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5 , 1996, Nature.

[7]  C. Mackay,et al.  The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Weiss,et al.  Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion , 1997, Journal of virology.

[9]  J K Nicholson,et al.  Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. , 1986, Science.

[10]  C. Mackay,et al.  Interaction of Chemokine Receptor CCR5 with its Ligands: Multiple Domains for HIV-1 gp120 Binding and a Single Domain for Chemokine Binding , 1997, The Journal of experimental medicine.

[11]  J. Hoxie,et al.  A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89.6) but not the T-tropic isolate HIV-1(HxB) , 1997, Journal of virology.

[12]  C. Broder,et al.  Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction , 1993, Journal of virology.

[13]  Marc Parmentier,et al.  Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene , 1996, Nature.

[14]  B. Cullen,et al.  HIV‐1‐induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR‐5 co‐receptor , 1997, The EMBO journal.

[15]  M. Goldsmith,et al.  Multiple Extracellular Elements of CCR5 and HIV-1 Entry: Dissociation from Response to Chemokines , 1996, Science.

[16]  Marc Parmentier,et al.  Regions in β-Chemokine Receptors CCR5 and CCR2b That Determine HIV-1 Cofactor Specificity , 1996, Cell.

[17]  C. Cheng‐Mayer,et al.  Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. , 1995, Virology.

[18]  D. Burke,et al.  Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes , 1988, The Journal of experimental medicine.

[19]  Stephen C. Peiper,et al.  Identification of a major co-receptor for primary isolates of HIV-1 , 1996, Nature.

[20]  Ying Sun,et al.  Two Orphan Seven-Transmembrane Segment Receptors Which Are Expressed in CD4-positive Cells Support Simian Immunodeficiency Virus Infection , 1997, The Journal of experimental medicine.

[21]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[22]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[23]  R. Connor,et al.  Change in Coreceptor Use Correlates with Disease Progression in HIV-1–Infected Individuals , 1997, The Journal of experimental medicine.

[24]  R. Weiss,et al.  Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry , 1996, Journal of virology.

[25]  B. Chesebro,et al.  Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells , 1990, Journal of virology.

[26]  H. Vinters,et al.  Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. , 1987, Science.

[27]  Ying Sun,et al.  The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates , 1996, Cell.

[28]  N. Heveker,et al.  Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity , 1997, Journal of virology.

[29]  Virginia Litwin,et al.  HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 , 1996, Nature.

[30]  Marc Parmentier,et al.  A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors , 1996, Cell.

[31]  Robin A. Weiss,et al.  The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain , 1986, Cell.

[32]  G Vassart,et al.  Molecular cloning and functional expression of a new human CC-chemokine receptor gene. , 1996, Biochemistry.

[33]  C. Broder,et al.  CC CKR5: A RANTES, MIP-1α, MIP-1ॆ Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1 , 1996, Science.

[34]  Luc Montagnier,et al.  T-lymphocyte T4 molecule behaves as the receptor for human retrovirus  LAV , 1984, Nature.

[35]  Steven M. Wolinsky,et al.  Relative resistance to HIV–1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high–risk sexual exposures , 1996, Nature Medicine.

[36]  K. Peden,et al.  STRL33, A Novel Chemokine Receptor–like Protein, Functions as a Fusion Cofactor for Both Macrophage-tropic and T Cell Line–tropic HIV-1 , 1997, The Journal of experimental medicine.

[37]  R. Doms,et al.  A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains , 1996, Journal of virology.

[38]  H. Lane,et al.  Isolation and characterization of a syncytium-inducing, macrophage/T-cell line-tropic human immunodeficiency virus type 1 isolate that readily infects chimpanzee cells in vitro and in vivo , 1995, Journal of virology.

[39]  M. Greaves,et al.  The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus , 1984, Nature.

[40]  William C. Olson,et al.  Amino-Terminal Substitutions in the CCR5 Coreceptor Impair gp120 Binding and Human Immunodeficiency Virus Type 1 Entry , 1998, Journal of Virology.