Spectroscopic studies of Cr3+ ions in natural single crystal of magnesium aluminate spinel MgAl2O4

[1]  Y. Song,et al.  The research on optical radiation in the collisions of low energy, highly charged Xeq+ ions with MgOAl2O3 surfaces , 2021 .

[2]  K. Yasuda,et al.  Transition of Cationic Local Structures in Mg1-xNixAl2O4 , 2021 .

[3]  G. Toci,et al.  Time- and Temperature-Dependent Luminescence of Manganese Ions in Ceramic Magnesium Aluminum Spinels , 2021, Materials.

[4]  Anatoli I. Popov,et al.  Low-temperature studies of Cr3+ ions in natural and neutron-irradiated g-Al spinel , 2020 .

[5]  M. Brik,et al.  An old system revisited: Al2O3:Ti3+ - Microscopic crystal field effects explored by the crystal field and first-principles calculations , 2020 .

[6]  Ting-yu Liu,et al.  Study of cation vacancies with localized hole states in MgAl2O4 crystals , 2020 .

[7]  Y. Oba,et al.  Local structure investigations of accumulated damage in irradiated MgAl 2 O 4 , 2020 .

[8]  S. Adachi Mn4+ and Cr3+ ions in red and deep red-emitting phosphors: Spectral analysis and Racah parameter determination , 2020 .

[9]  H. Mändar,et al.  Effects of Ta doping and irradiation with He+ ions on photoluminescence of MgAl2O4 spinel ceramics , 2020, Journal of the European Ceramic Society.

[10]  V. Kuzovkov,et al.  Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics , 2020, Scientific Reports.

[11]  Zongtao Zhang,et al.  Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm. , 2020, Dalton transactions.

[12]  Ting-yu Liu,et al.  Study on the optical spectra of MgAl2O4 with oxygen vacancies , 2020 .

[13]  A. Popov,et al.  Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4 , 2020 .

[14]  S. Stepanov,et al.  Structural and Spectroscopic Characterization of Tb3+‐Doped MgAl2O4 Spinel Ceramics Fabricated by Spark Plasma Sintering Technique , 2019, physica status solidi (b).

[15]  S. Stepanov,et al.  Influence of Temperature on the Luminescence Properties of MgAl2O4:Dy3+ Ceramics Synthesized by Spark Plasma Sintering , 2019, Physics of the Solid State.

[16]  Kaipeng Wu,et al.  Investigation of the structural, morphological and luminescence properties of MgAl2O4:Cr3+ nano powders , 2019, Journal of Materials Science: Materials in Electronics.

[17]  A. I. Popov,et al.  Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry , 2019, Optical Materials.

[18]  K. Maciejewska,et al.  The influence of dopant concentration and grain size on the ability for temperature sensing using nanocrystalline MgAl2O4:Co2+,Nd3+ luminescent thermometers , 2019, New Journal of Chemistry.

[19]  Anatoli I. Popov,et al.  Luminescence characteristics of magnesium aluminate spinel crystals of different stoichiometry , 2019, IOP Conference Series: Materials Science and Engineering.

[20]  M. Guillaumet,et al.  Color-center formation and thermal recovery in X-ray and electron-irradiated magnesium aluminate spinel , 2018, Journal of Applied Physics.

[21]  Anatoli I. Popov,et al.  Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals , 2017, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[22]  Miroslav D. Dramićanin,et al.  Luminescence of Cr3+ ions in ZnAl2O4 and MgAl2O4 spinels: correlation between experimental spectroscopic studies and crystal field calculations , 2016 .

[23]  V. Skvortsova,et al.  Luminescence and EPR spectroscopy of neutron-irradiated single crystals of magnesium aluminium spinel , 2016 .

[24]  M. Brik,et al.  A computation study of site occupancy in the commercial Mg 28 Ge 7.55 O 32 F 15.04 :Mn 4+ phosphor , 2016 .

[25]  M. Brik,et al.  Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. , 2014, Inorganic chemistry.

[26]  S. K. Biswas,et al.  Microstructure, mechanical, thermal, EPR, and optical properties of MgAl2O4:Cr3+ spinel glass–ceramic nanocomposites , 2014 .

[27]  G. Feng,et al.  Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ ion in Y3Al5O12 crystal , 2013 .

[28]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[29]  H. Kleebe,et al.  A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4) , 2009 .

[30]  M. Brik,et al.  Microscopic analysis of the crystal field strength and electron-vibrational interaction in cubic SrTiO3 doped with Cr3+, Mn4+ and Fe5+ ions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  J. Rao,et al.  Combustion synthesized MgAl2O4:Cr phosphors—An EPR and optical study , 2009 .

[32]  J. A. Aramburu,et al.  Microscopic origin of the different colors displayed byMgAl2O4:Cr3+and emerald , 2008 .

[33]  C. Brouder,et al.  X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4 , 2008, 0806.1586.

[34]  G. D. Price,et al.  First-principles simulation of high-pressure polymorphs in MgAl2O4 , 2008 .

[35]  M. Brik First principles analysis of the MgAl2O4:Ni2+ absorption spectrum , 2007 .

[36]  X. Kuang,et al.  Effect on the EPR and site symmetry of Cr3+ ions doping spinel crystals: A complete energy matrices study , 2007 .

[37]  I. Reimanis,et al.  Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics , 2006 .

[38]  S. C. Parker,et al.  Atomistic simulation of the surface energy of spinel MgAl2O4 , 2004 .

[39]  A. Kahn-Harari,et al.  Long-lifetime fluorescence and crystal field calculation in Cr4+-doped Li2MSiO4, M=Mg, Zn , 2003 .

[40]  V. Skvortsova,et al.  Neutron irradiation influence on magnesium aluminium spinel inversion , 2002 .

[41]  F. Gervais,et al.  Ab initio investigation of phonon modes in the MgAl2O4 spinel , 2002 .

[42]  A. Meijerink,et al.  Electron–phonon coupling of Cr3+ doped garnets , 2000 .

[43]  V. Skvortsova,et al.  Radiation displacement defect formation in some complex oxide crystals , 2000 .

[44]  A. Meijerink,et al.  Electron–phonon coupling of Cr3+ in YAG and YGG , 2000 .

[45]  Á. Ibarra,et al.  Dose dependence of neutron irradiation effects on MgAl2O4 spinels , 1998 .

[46]  N. Mironova,et al.  Distribution of manganese ions in magnesium-aluminium spinels of different stoichiometries , 1996 .

[47]  Z. Li,et al.  Dimensional stability, optical and elastic properties of MgAl2O4 spinel irradiated in FFTF to very high exposures , 1994 .

[48]  Valerio,et al.  Quantum-mechanical calculation of the solid-state equilibrium MgO+ alpha -Al2O3 , 1994, Physical review. B, Condensed matter.

[49]  Á. Ibarra,et al.  Use of luminescence of Mn2+ and Cr3+ in probing the disordering process in MgAl2O4 spinels , 1993 .

[50]  R. Moncorgé,et al.  Absorption and fluorescence properties of Cr3+ doped nonstoichiometric green spinel , 1991 .

[51]  López,et al.  V centers in MgAl2O4 spinels. , 1991, Physical review. B, Condensed matter.

[52]  Ching,et al.  Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4. , 1991, Physical review. B, Condensed matter.

[53]  D. Tucker,et al.  Effects of neutron-irradiation on MgAl2O4 and Al203 , 1986 .

[54]  Summers,et al.  Luminescence and photoconductivity in magnesium aluminum spinel. , 1985, Physical review. B, Condensed matter.

[55]  R. Macfarlane,et al.  OPTICAL SPECTRUM OF CR(3+) IONS IN SPINELS, , 1968 .