Molecular and morphological analyses of solitary forms of brackish Thalassiosiroid diatoms (Coscinodiscophyceae), with emphasis on their phenotypic plasticity

Abstract Blooms of centric diatoms are a common feature in the Bilbao estuary during summer when river flow is at its lowest and water temperature is above 20ºC. To gain insight into the specific composition of these diatom blooms, net samples and cultures of estuarine isolates were analysed under the scanning electron microscope (SEM) and by molecular analyses of the Internal Transcribed Spacers 1 and 2 plus the coding region 5.8S (ITS region) and the 28S rRNA gene. Seven species of solitary centric diatoms belonging to four genera were found in the estuary including: Conticribra weissflogii, Cyclotella atomus var. atomus, Cyclotella cryptica, Cyclotella marina, Cyclotella meneghiniana, Discostella pseudostelligera and Thalassiosira pseudonana. Dominant species during blooms were C. meneghiniana and Co. weissflogii in the upper estuary and D. pseudostelligera and T. pseudonana in the middle estuary. The morphological traits used to differentiate between species pairs of similar morphology (C. meneghiniana/C. cryptica or D. pseudostelligera/D. woltereckii) were observed to vary with environmental conditions, denoting a great deal of phenotypic plasticity which would hinder accurate identification of the species when using morphological approaches alone.

[1]  Megumi Kato,et al.  A New Variety of Cyclotella atomus from Tokyo Bay, Japan; C. atomus var. marina var. nov , 2004 .

[2]  H. Marshall,et al.  Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake Bay, USA , 2006 .

[3]  F. Hustedt Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra, nach dem Material der Deutschen Limnologischen Sunda-Expedition , 1980 .

[4]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[5]  Hiroyuki Tanaka Taxonomic Studies of the Genera Cyclotella (Kützing) Brébisson, Discostella Houk et Klee and Puncticulata Hakansson in the Family Stephanodiscaceae Glezer et Makarova (Bacillariophyta) in Japan , 2007 .

[6]  Á. Borja,et al.  Chapter 18 – Benthic communities, biogeography and resources management , 2004 .

[7]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[8]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[9]  P. I. Tremarin,et al.  Taxonomic studies of centric diatoms (Diatomeae): unusual nanoplanktonic forms and new records for Brazil , 2013 .

[10]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[11]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[12]  Hannelore Håkansson,et al.  A compilation and evaluation of species in the general Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family Stephanodiscaceae , 2002 .

[13]  K. Sabbe,et al.  The Diatom Genus Thalassiosira (Bacillariophyta) in the Estuaries of the Schelde (Belgium/The Netherlands) and the Elbe (Germany) , 1996 .

[14]  E. Orive,et al.  Chapter 15 – Bacterioplankton and phytoplankton communities , 2004 .

[15]  J. Woolliams,et al.  What is Genetic Diversity , 2007 .

[16]  A. Amato,et al.  Reproductive isolation among sympatric cryptic species in marine diatoms. , 2007, Protist.

[17]  E. Stoermer,et al.  VARIATION AND POLYMORPHISM IN DIATOMS: THE TRIPLE HELIX OF DEVELOPMENT, GENETICS AND ENVIRONMENT. A REVIEW OF THE LITERATURE , 2010 .

[18]  B. Chessman,et al.  Development of blooms of Cyclotella meneghiniana and Nitzschia spp. (Bacillariophyceae) in a shallow river and estimation of effective suppression flows , 2007, Hydrobiologia.

[19]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[20]  T. A. Chekryzheva,et al.  Centric diatoms (Bacillariophyta, Centrophyceae) in Karelian waterbodies , 2011, Inland Water Biology.

[21]  B. Beszteri,et al.  Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. , 2005, Protist.

[22]  C. Steinberg,et al.  Identifizierung von nanoplanktischen kieselalgen (centrales, bacillariophyceae) in der Rott und im Rott-stausee (bayern, bundesrepublik Deutschland) , 1989 .

[23]  K. T. Kiss,et al.  Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution , 2012 .

[24]  C. Lancelot,et al.  Effect of salinity on growth, cell size and silicification of an euryhaline freshwater diatom: Cyclotella meneghiniana Kütz , 2008 .

[25]  W. Vyverman,et al.  Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium) , 2008 .

[26]  J. Guerrero,et al.  Discostella taxa (Bacillariophyta) from the Río Limay basin (northwestern Patagonia, Argentina) , 2006 .

[27]  E. Sar,et al.  Thalassiosira fryxelliae nov. spec. (Bacillariophyceae) from Argentinian coastal waters , 2004 .

[28]  J. Johansen,et al.  SPICATICRIBRA KINGSTONII, GEN. NOV. ET SP. NOV. (THALASSIOSIRALES, BACILLARIOPHYTA) FROM GREAT SMOKY MOUNTAINS NATIONAL PARK, U.S.A. , 2008 .

[29]  G. Usup,et al.  Genetic Diversity of Ostreopsis ovata (Dinophyceae) from Malaysia , 2001, Marine Biotechnology.

[30]  E. Sar,et al.  The diatom genus Thalassiosira: species from the northern San Matías Gulf (Río Negro, Argentina) , 2002 .

[31]  E. Orive,et al.  Phytoplankton blooms in the Urdaibai estuary during summer: Physico-chemical conditions and taxa involved , 1998 .

[32]  M. Cherepanova,et al.  Morphogenesis in Cyclotella ocellata — complex from Lake El’gygytgyn (Chukchi Peninsula) during the Pleistocene-Holocene , 2010 .

[33]  G. Morabito,et al.  Topical observations on centric diatoms (Bacillariophyceae, Centrales) of Lake Como (N. Italy) , 2003 .

[34]  Min-Ah Lee,et al.  Evaluation of nuclear ribosomal RNA and chloroplast gene markers for the DNA taxonomy of centric diatoms , 2013 .

[35]  B. Schobert The influence of water stress on the metabolism of diatoms I. Osmotic resistance and proline accumulation in Cyclotella meneghiniana , 1974 .

[36]  J. Nienow,et al.  The centric diatom genus Cyclotella, (Stephanodiscaceae: Bacillariophyta) from Florida Bay, USA, with special reference to Cyclotella choctawhatcheeana and Cyclotella desikacharyi, a new marine species related to the Cyclotella striata complex†† , 2006 .

[37]  T. Petersen,et al.  INTER‐ AND INTRASPECIFIC RELATIONSHIPS BETWEEN NUCLEAR DNA CONTENT AND CELL SIZE IN SELECTED MEMBERS OF THE CENTRIC DIATOM GENUS THALASSIOSIRA (BACILLARIOPHYCEAE) 1 , 2008, Journal of phycology.

[38]  W. Yoon,et al.  Morphological description of Cyclotella atomus var. marina (Bacillariophyceae): newly reported in Korean waters , 2010 .

[39]  J. M. Trigueros Morphology and distribution of two brackish diatoms (Bacillariophyceae): Cyclotella atomus Hustedt and Thalassiosira guillardii Hasle in the estuary of Urdaibai (northern Spain) , 2000 .

[40]  G. Fryxell,et al.  Taxonomy of harmful diatoms , 2003 .

[41]  M. E. Schultz Salinity-related polymorphism in the brackish-water diatom Cyclotella cryptica , 1971 .

[42]  J. Stastny Desmids (Conjugatophyceae, Viridiplantae) from the Czech Republic; new and rare taxa, distribution, ecology. , 2010 .

[43]  E. Orive,et al.  The genus Pseudo-nitzschia (Bacillariophyceae) in a temperate estuary with description of two new species: Pseudo-nitzschia plurisecta sp. nov. and Pseudo-nitzschia abrensis sp. nov. , 2013, Journal of phycology.

[44]  A. Lavigne,et al.  CYMATOTHECA, TRYBLIOPTYCHUS, SKELETONEMA AND CYCLOTELLA (THALASSIOSIRALES) FROM ARGENTINIAN COASTAL WATERS. DESCRIPTION OF CYCLOTELLA CUBICULATA SP. NOV. , 2010 .

[45]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[46]  G. Hasle,et al.  Some Species of the Centric Diatom Genus Thalassiosira Studied in the Light and Electron Microscopes , 1970, Nova Hedwigia, Beihefte.

[47]  E. Orive,et al.  Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages , 2001, Hydrobiologia.

[48]  David M. Williams,et al.  Description of Conticribra tricircularis , a new genus and species of Thalassiosirales, with a discussion on its relationship to other continuous cribra species of Thalassiosira Cleve (Bacillariophyta) and its freshwater origin , 2009 .

[49]  V. Houk,et al.  THE STELLIGEROID TAXA OF THE GENUS CYCLOTELLA (KÜTZING) BRÉBISSON (BACILLARIOPHYCEAE) AND THEIR TRANSFER INTO THE NEW GENUS DISCOSTELLA GEN. NOV. , 2004 .

[50]  Andrew J. Alverson,et al.  The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella , 2011, BMC Evolutionary Biology.

[51]  S. Juggins,et al.  COASTAL DIATOM–ENVIRONMENT RELATIONSHIPS FROM THE GULF OF FINLAND, BALTIC SEA 1 , 2006 .

[52]  E. Orive,et al.  Phytoplankton Assemblages and Their Dominant Pigments in the Nervion River Estuary , 2005, Hydrobiologia.

[53]  M. Martínez‐Porchas,et al.  Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases , 2012 .

[54]  Andrew J. Alverson,et al.  Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. , 2007, Molecular phylogenetics and evolution.

[55]  E. Orive,et al.  Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary , 2000 .

[56]  E. Stoermer 15 – CENTRIC DIATOMS , 2003 .

[57]  B. Schobert The Influence of Water Stress on the Metabolism of Diatoms , 1977 .

[58]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[59]  B. Beszteri,et al.  An assessment of cryptic genetic diversity within the Cyclotella meneghiniana species complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms , 2007 .

[60]  Linda K. Medlin,et al.  Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. , 2007 .

[61]  M. Shariff,et al.  Effect of Salinity and Temperature on the Growth of Diatoms and Green Algae , 2013 .

[62]  K. T. Kiss,et al.  Morphological variability of the diatom Cyclotella atomus Hustedt var. atomus and C. atomus var. gracilis var. nov. , 1993, Hydrobiologia.

[63]  T. Friedl,et al.  Phytoplankton Diversity and Community Composition along the Estuarine Gradient of a Temperate Macrotidal Ecosystem: Combined Morphological and Molecular Approaches , 2014, PloS one.

[64]  Friedrich Hustedt,et al.  Die Diatomeenflora Des Fluss-Systems Der Weser Im Gebiet Der Hansestadt Bremen , 1976 .

[65]  W. Vyverman,et al.  Spatial and Temporal Dynamics of Phytoplankton Communities in a Freshwater Tidal Estuary (Schelde, Belgium) , 2000 .

[66]  K. Karino,et al.  Developmental plasticity and genotype–environment interactions influence valve morphology in the Cyclotella meneghiniana species complex (Bacillariophyceae) , 2012 .

[67]  D. Anderson,et al.  TWO DISTINCT SMALL‐SUBUNIT RIBOSOMAL RNA GENES IN THE NORTH AMERICAN TOXIC DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE) 1 , 1993 .

[68]  Y. Peerapornpisal,et al.  Distribution and Phylogeny of Spicaticribra kingstonii rudis Species Complex , 2012 .

[69]  E. Paasche The influence of salinity on the growth of some plankton diatoms from brackish water , 1975 .