Realisation of a holographic microlaser scalpel using a digital micromirror device

Modern spatial light modulators (SLM) enable the generation of more or less arbitrary light fields in three dimensions. Such light fields can be used for different future applications in the field of biomedical optics. One example is the processing/cutting of biological material on a microscopic scale. By displaying computer generated holograms by suitable SLMs it is possible to ablate complex structures into three-dimensional objects without scanning with very high accuracy on a microscopic scale. To effectively cut biological materials by light, pulsed ultraviolet light is preferable. We will present a combined setup of a holographic laser scalpel using a digital micromirror device (DMD) and holographic optical tweezers using a liquid crystal display (LCD). The setup enables to move and cut or process micro-scaled objects like biological cells or tissue in three dimensions with high accuracy and without any mechanical movements just by changing the hologram displayed by the SLMs. We will show that holograms can be used to compensate aberrations implemented by the DMD or other optical components of the setup. Also we can generate arbitrary light fields like stripes, circles or arbitrary curves. Additionally we will present results for the fast optimization of holograms for the system. In particular we will show results obtained by implementing iterative Fourier transform based algorithms on a standard consumer graphics board (Nvidia 8800GLX). By this approach we are able to compute more than 360 complex 2D FFTs (512 × 512 pixels) per second with floating point precision.

[1]  L. Liotta,et al.  Laser Capture Microdissection , 1996, Science.

[2]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[3]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[4]  M W Berns,et al.  Laser scissors and tweezers. , 1998, Scientific American.

[5]  Yoshio Hayasaki Optical manipulation of microparticles using diffractive optical elements , 1996, International Commission for Optics.

[6]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[7]  S. Bassil,et al.  Micromanipulation of mouse gametes with laser microbeam and optical tweezers. , 1995, Human reproduction.

[8]  Mark Oskin,et al.  Using modern graphics architectures for general-purpose computing: a framework and analysis , 2002, 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings..

[9]  M W Berns,et al.  Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. , 1991, Cytometry.

[10]  K. O. Greulich,et al.  Micromanipulation by light in biology and medicine : the laser microbeam and optical tweezers , 1999 .

[11]  N Yoshikawa,et al.  Phase optimization of a kinoform by simulated annealing. , 1994, Applied optics.

[12]  Wolfgang Osten,et al.  Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. , 2006, Applied optics.

[13]  Hans J. Tiziani,et al.  Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display , 1999 .

[14]  Walter M. Duncan,et al.  Emerging digital micromirror device (DMD) applications , 2003, SPIE MOEMS-MEMS.

[15]  M. R. Douglass,et al.  Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD) , 1998, 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173).

[16]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[17]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[18]  Adisorn Tuantranont,et al.  Thermal analysis of micromirrors for high-energy applications , 2003 .

[19]  Y Sheng,et al.  Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions. , 1996, Applied optics.

[20]  Wolfgang Osten,et al.  Spatial Light Modulators—Versatile Tools for Holography , 2006 .

[21]  M W Berns,et al.  Laser microsurgery in cell and developmental biology. , 1981, Science.

[22]  Wolfgang Osten,et al.  Fast hologram computation and aberration control for holographic tweezers , 2005, SPIE Optics + Photonics.

[23]  Norbert Kaiser,et al.  High-performance coatings for micromechanical mirrors. , 2006, Applied optics.

[24]  Thomas J. Pohida,et al.  AN INSTRUMENT FOR PERFORMING LASER CAPTURE MICRODISSECTION OF SINGLE CELLS , 1999 .

[25]  Anna M. Lackner,et al.  Near Ultraviolet Photostability of Liquid Crystal Mixtures , 1986 .

[26]  Jonathan Leach,et al.  Aberration correction in holographic optical tweezers. , 2006, Optics express.

[27]  Min Wu,et al.  Using Graphics Boards to Compute Holograms , 2006, Comput. Sci. Eng..

[28]  Peter R. Herman,et al.  Single-cell analysis on a microchip platform using optical tweezers and optical scissors , 2003, SPIE MOEMS-MEMS.

[29]  Toyohiko Yatagai,et al.  Nonmechanical Optical Manipulation of Microparticle Using Spatial Light Modulator , 1999 .

[30]  Jonas Enger,et al.  An experimental setup for combining optical tweezers and laser scalpels with advanced imaging techniques , 2003, SPIE BiOS.

[31]  Jörgen Bengtsson,et al.  Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-Fourier-transform algorithm with soft operations , 2000 .

[32]  Eric G. Johnson,et al.  Microgenetic-algorithm optimization methods applied to dielectric gratings , 1995 .

[33]  J. Allebach,et al.  Synthesis of digital holograms by direct binary search. , 1987, Applied optics.

[34]  Andrew J. Waddie,et al.  Phase-only diffractive optical elements with subdiffraction-limited depth of focus , 2003 .

[35]  L. Liotta,et al.  Laser capture microdissection. , 2006, Methods in molecular biology.