Heuristic optimisation in financial modelling

There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well-behaved’ in other ways (e.g., discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. We argue that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable of handling non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, we present several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, we then describe in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. We show, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.

[1]  Peter Winker,et al.  Applications of Heuristics in Finance , 2008 .

[2]  J Tobin,et al.  Portfolio theory. , 1981, Science.

[3]  J. Fontanari,et al.  Stochastic versus deterministic update in simulated annealing , 1990 .

[4]  A. Siegel,et al.  Parsimonious modeling of yield curves , 1987 .

[5]  Fred W. Glover,et al.  Tabu search—Uncharted domains , 2007, Ann. Oper. Res..

[6]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[7]  K. Fang,et al.  Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .

[8]  G. Dueck,et al.  Record Breaking Optimization Results Using the Ruin and Recreate Principle , 2000 .

[9]  Manfred Gilli,et al.  A Data-Driven Optimization Heuristic for Downside Risk Minimization , 2006 .

[10]  A. Kirman Whom Or What Does the Representative Individual Represent , 1992 .

[11]  Berç Rustem,et al.  Computational Methods in Financial Engineering , 2008 .

[12]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[13]  Erricos John Kontoghiorghes,et al.  Optimisation, econometric and financial analysis , 2007 .

[14]  Ron S. Dembo,et al.  Scenario optimization , 1991, Ann. Oper. Res..

[15]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[16]  Peter Winker,et al.  The Threshold Accepting Optimisation Algorithm in Economics and Statistics , 2007 .

[17]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[18]  Alan Kirman,et al.  Ants, Rationality, and Recruitment , 1993 .

[19]  S. Mikhailov,et al.  Heston ’ s Stochastic Volatility Model Implementation , Calibration and Some , 2003 .

[20]  Peter Winker,et al.  Computational methods in financial engineering : essays in honour of Manfred Gilli , 2008 .

[21]  Anthony Brabazon,et al.  Natural Computing in Computational Finance , 2008, Natural Computing in Computational Finance.

[22]  Detlef Seese,et al.  Modern Heuristics for Finance Problems: A Survey of Selected Methods and Applications , 2004 .

[23]  Contents , 2012, Neuroscience Letters.

[24]  Gary J. Koehler,et al.  The Calculation of Implied Variances from the Black‐Scholes Model: A Note , 1982 .

[25]  Dietmar G. Maringer,et al.  Finding the relevant risk factors for asset pricing , 2002, Comput. Stat. Data Anal..

[26]  Auke Plantinga,et al.  The Dutch Triangle , 1999 .

[27]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[28]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[29]  A. Dixit Optimization in Economic Theory , 1976 .

[30]  J. Bartram Assessment of Risk , 2004 .

[31]  Ozgur Ince,et al.  Individual Equity Return Data from Thomson Datastream: Handle with Care! , 2004 .

[32]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[33]  Dietmar Maringer,et al.  Portfolio management with heuristic optimization , 2005 .

[34]  E. Fama,et al.  The Capital Asset Pricing Model: Theory and Evidence , 2003 .

[35]  Peter Winker,et al.  An objective function for simulation based inference on exchange rate data , 2007 .

[36]  Detlef Seese,et al.  Handbook on Information Technology in Finance , 2008 .

[37]  Manfred Gilli,et al.  Optimal enough? , 2010, J. Heuristics.

[38]  Louis K.C. Chan,et al.  Robust Measurement of Beta Risk , 1992, Journal of Financial and Quantitative Analysis.

[39]  Philip E. Gill,et al.  Practical optimization , 1981 .

[40]  Daniella Acker,et al.  Reference-Day Risk and the Use of Monthly Returns Data , 2007 .

[41]  Ingo Althöfer,et al.  On the convergence of “Threshold Accepting” , 1991 .

[42]  R. Martin,et al.  Outlier-Resistant Estimates of Beta , 2003 .

[43]  Peter Winker Optimization Heuristics in Econometrics : Applications of Threshold Accepting , 2000 .

[44]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[45]  Erricos John Kontoghiorghes,et al.  Handbook of Computational Econometrics , 2009 .

[46]  Peter Winker,et al.  Applications of optimization heuristics to estimation and modelling problems , 2004, Comput. Stat. Data Anal..

[47]  Manfred Gilli,et al.  Portfolio optimization with “Threshold Accepting”: a practical guide , 2010 .

[48]  Vittorio Maniezzo,et al.  Matheuristics: Hybridizing Metaheuristics and Mathematical Programming , 2009 .

[49]  J. Cockcroft Investment in Science , 1962, Nature.

[50]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[51]  D. B. Madan On the modelling of option prices , 2001 .

[52]  Manfred Gilli,et al.  Distributed Optimisation of a Portfolio's Omega , 2008, Parallel Comput..

[53]  M. Gilli,et al.  Heuristic Optimization Methods in Econometrics , 2009 .

[55]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[56]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[57]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[58]  A. Lo Hedge Funds: An Analytic Perspective , 2008 .

[59]  Kyriakos Chourdakis Option Pricing Using the Fractional FFT , 2004 .

[60]  Lars E. O. Svensson Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994 , 1994, SSRN Electronic Journal.

[61]  Manfred Gilli,et al.  Optimization in financial engineering - an essay on 'good' solutions and misplaced exactitude , 2010 .

[62]  Elvezio Ronchetti,et al.  Robust Prediction of Beta , 2008 .

[63]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[65]  Oldrich A Vasicek,et al.  A NOTE ON USING CROSS‐SECTIONAL INFORMATION IN BAYESIAN ESTIMATION OF SECURITY BETAS , 1973 .

[66]  M. Gilli,et al.  A Global Optimization Heuristic for Portfolio Choice with VaR and Expected Shortfall , 2002 .

[67]  D. Maringer Risk Preferences and Loss Aversion in Portfolio Optimization , 2008 .

[68]  David Pisinger,et al.  Large Neighborhood Search , 2018, Handbook of Metaheuristics.

[69]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[70]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[71]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[72]  Manfred Gilli,et al.  Risk–reward optimisation for long-run investors: an empirical analysis , 2009 .

[73]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[74]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[75]  Stephen E. Satchell,et al.  Optimizing Optimization: The Next Generation of Optimization Applications and Theory , 2009 .

[76]  Panos M. Pardalos,et al.  Financial Engineering, E-commerce and Supply Chain , 2010 .

[77]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[78]  Auke Plantinga,et al.  The Dutch triangle - A framework to measure upside potential relative to downside risk. , 1999 .

[79]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[80]  S. Ben Hamida,et al.  Recovering Volatility from Option Prices by Evolutionary Optimization , 2004 .

[81]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[82]  Peter Winker,et al.  A global optimization heuristic for estimating agent based models , 2003, Comput. Stat. Data Anal..

[83]  Manfred Gilli,et al.  The Threshold Accepting Heuristic for Index Tracking , 2001 .

[84]  B. LeBaron Agent-based Computational Finance , 2006 .

[85]  David S. Bates Empirical option pricing: a retrospection , 2003 .

[86]  Blake LeBaron,et al.  Agent-based computational finance : Suggested readings and early research , 2000 .

[87]  Manfred Gilli,et al.  Constructing 130/30-portfolios with the Omega ratio , 2009 .

[88]  S. Uryasev,et al.  Drawdown Measure in Portfolio Optimization , 2003 .

[89]  Stan Uryasev,et al.  Conditional Value-at-Risk: Optimization Approach , 2001 .

[90]  F. Diebold,et al.  Forecasting the Term Structure of Government Bond Yields , 2002 .

[91]  Christoph Schwab,et al.  Sparse Wavelet Methods for Option Pricing under Stochastic Volatility , 2004 .

[92]  Enrico Schumann,et al.  Numerical Methods and Optimization in Finance , 2011 .

[93]  Frederick S. Hillier Heuristics: A Gambler's Roll , 1983 .

[94]  Peter J. Knez,et al.  On The Robustness of Size and Book‐to‐Market in Cross‐Sectional Regressions , 1997 .

[95]  James R. Evans,et al.  Heuristic “Optimization”: Why, When, and How to Use It , 1981 .

[96]  Ronald Hochreiter,et al.  Evolutionary Stochastic Portfolio Optimization , 2008, Natural Computing in Computational Finance.

[97]  Paolo Brandimarte,et al.  Numerical Methods in Finance and Economics: A MATLAB-Based Introduction , 2006 .

[98]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[99]  Svetlozar T. Rachev,et al.  Handbook of computational and numerical methods in finance , 2004 .

[100]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[101]  Peter Winker,et al.  A Review of Heuristic Optimization Methods in Econometrics , 2008 .