Location-Aware Quality of Service Measurements for Service-Level Agreements

We add specifications of location-aware measurements to performance models in a compositional fashion, promoting precision in performance measurement design. Using immediate actions to send control signals between measurement components we are able to obtain more accurate measurements from our stochastic models without disturbing their structure. A software tool processes both the model and the measurement specifications to give response time distributions and quantiles, an essential calculation in determining satisfaction of service-level agreements (SLAs).

[1]  Michael Rettelbach Probabilistic Branching in Markovian Process Algebras , 1995, Comput. J..

[2]  Allan Clark,et al.  Evaluating Quality of Service for Service Level Agreements , 2006, FMICS/PDMC.

[3]  John F. Meyer,et al.  On Evaluating the Performability of Degradable Computing Systems , 1980, IEEE Transactions on Computers.

[4]  Stephen Gilmore,et al.  An Efficient Algorithm for Aggregating PEPA Models , 2001, IEEE Trans. Software Eng..

[5]  Holger Hermanns,et al.  Formal Characterisation of Immediate Actions in SPA with Nondeterministic Branching , 1995, Comput. J..

[6]  Ulrich Herzog,et al.  Formal Methods for Performance Evaluation , 2002, European Educational Forum: School on Formal Methods and Performance Analysis.

[7]  Katinka Wolter,et al.  Formal Methods and Stochastic Models for Performance Evaluation, Fourth European Performance Engineering Workshop, EPEW 2007, Berlin, Germany, September 27-28, 2007, Proceedings , 2007, European Performance Engineering Workshop.

[8]  Roberto Gorrieri,et al.  A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time , 1998, Theor. Comput. Sci..

[9]  J. Bradley SEMI-MARKOV PEPA : MODELLING WITH GENERALLY DISTRIBUTED ACTIONS , 2005 .

[10]  William H. Sanders,et al.  An efficient well-specified check , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[11]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[12]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[13]  Jie Ding,et al.  Performance Modelling of Content Adaptation for a Personal Distributed Environment , 2009, Wirel. Pers. Commun..

[14]  Marta Z. Kwiatkowska,et al.  Stochastic Model Checking , 2007, SFM.

[15]  Jeremy T. Bradley,et al.  Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models , 2004, WOSP '04.

[16]  William J. Knottenbelt,et al.  Generalised Markovian analysis of timed transition systems , 1996 .

[17]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[18]  K. R. Parthasarathy Boson stochastic calculus , 1985 .

[19]  Stephen Gilmore,et al.  Derivation of passage-time densities in PEPA models using ipc: the imperial PEPA compiler , 2003, 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003..

[20]  Marco Ajmone Marsan,et al.  A class of generalised stochastic petri nets for the performance evaluation of multiprocessor systems , 1983, SIGMETRICS '83.

[21]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[22]  Jeremy T. Bradley,et al.  Functional Performance Specification with Stochastic Probes , 2006, EPEW.

[23]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[24]  Alan Bain Stochastic Calculus , 2007 .

[25]  Joost-Pieter Katoen,et al.  MoDeST - A Modelling and Description Language for Stochastic Timed Systems , 2001, PAPM-PROBMIV.

[26]  Peter G. Harrison,et al.  SPADES - a process algebra for discrete event simulation , 2000, J. Log. Comput..