Quantum control landscapes

Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrödinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[3]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[4]  T. Baumert,et al.  Femtosecond pulse shaping by an evolutionary algorithm with feedback , 1997 .

[5]  H. Rabitz,et al.  Why do effective quantum controls appear easy to find , 2006 .

[6]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[7]  T. Baumert,et al.  Quantum control and quantum control landscapes using intense shaped femtosecond pulses , 2005 .

[8]  H. Rabitz,et al.  Transformations to diagonal bases in closed-loop quantum learning control experiments. , 2005, The Journal of chemical physics.

[9]  V. Jurdjevic Geometric control theory , 1996 .

[10]  H. Rabitz,et al.  Optimal control landscapes for quantum observables. , 2006, The Journal of chemical physics.

[11]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[12]  Domenico D'Alessandro,et al.  Topological properties of reachable sets and the control of quantum bits , 2000 .

[13]  James D. Malley,et al.  Quantum Statistical Inference , 1993 .

[14]  H. Rabitz,et al.  Landscape for optimal control of quantum-mechanical unitary transformations , 2005 .

[15]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[16]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[17]  Rabitz,et al.  Optimally controlled quantum molecular dynamics: A perturbation formulation and the existence of multiple solutions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Herschel Rabitz,et al.  Observable-preserving control of quantum dynamics over a family of related systems , 2005 .

[20]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[21]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  C. Conover,et al.  Closed-loop control of intense-laser fragmentation of S 8 , 2005 .

[23]  Uwe Helmke,et al.  Spin Dynamics: A Paradigm for Time Optimal Control on Compact Lie Groups , 2006, J. Glob. Optim..

[24]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[25]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[26]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[27]  A. Rothman,et al.  Exploring the level sets of quantum control landscapes (9 pages) , 2006 .

[28]  Michael Hsieh,et al.  Quantum optimal control: Hessian analysis of the control landscape. , 2006, The Journal of chemical physics.

[29]  S. S. Cairns,et al.  Differential and combinatorial topology : a symposium in honor of Marston Morse , 1965 .

[30]  J. Gauthier,et al.  Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .

[31]  Herschel Rabitz,et al.  Quantum control of molecular motion including electronic polarization effects with a two-stage toolkit. , 2005, The Journal of chemical physics.

[32]  Sophie Schirmer,et al.  KINEMATICAL BOUNDS ON OPTIMIZATION OF OBSERVABLES FOR QUANTUM SYSTEMS , 1998 .

[33]  H. Rabitz,et al.  Quantum observable homotopy tracking control. , 2005, The Journal of chemical physics.

[34]  Bjarne Amstrup,et al.  Genetic Algorithm with Migration on Topology Conserving Maps for Optimal Control of Quantum Systems , 1995 .

[35]  Herschel Rabitz,et al.  Laboratory observation of quantum control level sets , 2006 .

[36]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[37]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[38]  Hava T. Siegelmann,et al.  Computational Complexity for Continuous Time Dynamics , 1999 .

[39]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[40]  Jennifer L. Herek Coherent control of photochemical and photobiological processes , 2006 .

[41]  Dutta,et al.  Two-mode quantum systems: Invariant classification of squeezing transformations and squeezed states. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  Tzyh-Jong Tarn,et al.  Smooth controllability of infinite-dimensional quantum-mechanical systems (11 pages) , 2006 .

[43]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.