Towards a Location-Scheduled Controller for Nanosatellites

[1]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[2]  Christopher Beasley,et al.  Small Class-D spacecraft thermal design, test and analysis - PharmaSat biological experiment , 2009, 2009 IEEE Aerospace conference.

[3]  Jochen Schein,et al.  Microvacuum Arc Thruster Design for a Cubesat Class Satellite , 2002 .

[4]  Christopher Kitts,et al.  The GeneSat-1 Test Demonstration Project: A Unique Use of Smallsats , 2005 .

[5]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .

[6]  Robert Zee,et al.  Adaptable, Multi-Mission Design of CanX Nanosatellites , 2006 .

[7]  J. Puig-Suari,et al.  Development of the standard CubeSat deployer and a CubeSat class PicoSatellite , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[8]  B. Jackson,et al.  A reconfigurable multifunctional architecture approach for next-generation nanosatellite design , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[9]  Eric Caillibot,et al.  Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite , 2006 .

[10]  Kalmanje Krishnakumar,et al.  A Plug and Play GNC Architecture Using FPGA Components , 2005 .

[11]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[12]  Jordi Puig-Suari,et al.  The CubeSat: The Picosatellite Standard for Research and Education , 2008 .

[13]  Frederick A. Leve,et al.  Three-Axis Attitude Control Design for On-Orbit Robotics , 2007 .