Assessing maintenance strategies for cutting tool replacements in mechanized tunneling using process simulation

In mechanized tunneling, detailed planning with an accurate performance prediction of the tunnel boring machine (TBM) is needed for a successful tunnel project. Undersized logistical components, disturbances of the supply chain, as well as negligence of maintenance schedules reduce the TBM performance and frequently lead to avoidable times of standstill. This paper presents a performance forecast model for mechanized tunneling projects focusing on wear and maintenance processes of the cutting tools. The developed simulation model has been implemented in the simulation environment AnyLogic using the multi-method approach, including agent-based modeling as well as discrete-event and system dynamic simulation. The model can be used to evaluate different maintenance strategies for a tunneling project. Thus, an improved maintenance strategy for reducing the time of standstill can be found.

[1]  Yilan Kang,et al.  Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis , 2015 .

[2]  Markus König,et al.  Prozesssimulation von maschinellen Tunnelvortrieben. Verfügbarkeitsanalysen der Leistungsprozesse unter Berücksichtigung von Stillständen , 2014 .

[3]  Markus König,et al.  Simulation-Based Analysis of Surface Jobsite Logistics in Mechanized Tunneling , 2014 .

[4]  Simaan M. AbouRizk,et al.  Simulation modeling and sensitivity analysis of a tunneling construction project's supply chain , 2011 .

[5]  Gernot Beer Numerical Simulation in Tunnelling , 2003 .

[6]  Pål Drevland Jakobsen,et al.  Estimation of soft ground tool life in TBM tunnelling , 2014 .

[7]  Markus König,et al.  Simulation-Based Analysis of Integrated Production and Jobsite Logistics in Mechanized Tunneling , 2016, J. Comput. Civ. Eng..

[8]  Simaan M. AbouRizk,et al.  Special purpose simulation template for utility tunnel construction , 1999, WSC '99.

[9]  Simaan M. AbouRizk,et al.  Simphony Supply Chain Simulator: a simulation toolkit to model the supply chain of construction projects , 2011, Simul..

[10]  Janosch Stascheit,et al.  Parallelized computational modeling of pile–soil interactions in mechanized tunneling , 2013 .

[11]  Hangseok Choi,et al.  Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels , 2015 .

[12]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[13]  Simaan M. AbouRizk,et al.  Using Simulation to Plan Tunnel Construction , 2013 .

[14]  Anthony M. Smith,et al.  Reliability-Centered Maintenance , 1992 .

[15]  Jian Zhao,et al.  Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel, Iran , 2014 .

[16]  Florian Köppl,et al.  Abbauwerkzeugverschleiß und empirische Verschleißprognose beim Vortrieb mit Hydroschild‐TVM in Lockergesteinen , 2015 .

[17]  Jamal Rostami,et al.  Development of soil abrasivity testing for soft ground tunneling using shield machines , 2012 .

[18]  Kurosch Thuro,et al.  Suggestion of an empirical prognosis model for cutting tool wear of Hydroshield TBM , 2015 .

[19]  F. Dahl,et al.  Abrasivity testing for rock and soils , 2006 .

[20]  Simaan M. AbouRizk,et al.  Productivity Simulation During the Planning Phase of the Glencoe Tunnel in Calgary, Canada: A Case Study , 2006, Proceedings of the 2006 Winter Simulation Conference.

[21]  Simaan M. AbouRizk,et al.  Role of Simulation in Construction Engineering and Management , 2010 .

[22]  Markus König,et al.  Evaluation of Disturbances in Mechanized Tunneling Using Process Simulation , 2016, Comput. Aided Civ. Infrastructure Eng..

[23]  Ulrich Maidl,et al.  Abrasiveness and tool wear in shield tunnelling in soil / Abrasivität und Werkzeugverschleiß beim Schildvortrieb im Lockergestein , 2011 .

[24]  Felix Nagel,et al.  A Numerical Simulation Model for Shield Tunnelling with Compressed Air Support , 2008 .