Comparing and Aggregating Partial Orders with Kendall Tau Distances

Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order or a bucket order of all candidates, where bucket orders allow ties. In this work we consider the generalization of total and bucket orders to partial orders and compare them by the nearest neighbor and the Hausdorff Kendall tau distances. For total and bucket orders these distances can be computed in $\mathcal{O}(n \log n)$ time. We show that the computation of the nearest neighbor Kendall tau distance is NP-hard, 2-approximable and fixed-parameter tractable for a total and a partial order. The computation of the Hausdorff Kendall tau distance for a total and a partial order is shown to be coNP-hard. The rank aggregation problem is known to be NP-complete for total and bucket orders, even for four voters and solvable in $\mathcal{O}(n\log n)$ for two voters. It is NP-complete for two partial orders and the nearest neighbor Kendall tau distance. For the Hausdorff Kendall tau distance it is in $\mathbf{\Sigma_2^p}$ , but not in NP or coNP unless $\ensuremath{\mathbf{NP}} = \ensuremath{\mathbf{coNP}} $ , even for four voters.

[1]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[2]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[3]  John D. Lafferty,et al.  Cranking: Combining Rankings Using Conditional Probability Models on Permutations , 2002, ICML.

[4]  Javed A. Aslam,et al.  Bayes optimal metasearch: a probabilistic model for combining the results of multiple retrieval systems (poster session) , 2000, SIGIR '00.

[5]  Ariel D. Procaccia,et al.  On the approximability of Dodgson and Young elections , 2009, Artif. Intell..

[6]  M. Schaefer,et al.  Completeness in the Polynomial-Time Hierarchy A Compendium ∗ , 2008 .

[7]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[8]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2010, J. Discrete Algorithms.

[9]  Shinichi Morishita,et al.  Rank Aggregation Method for Biological Databases , 2001 .

[10]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[11]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[12]  David P. Williamson,et al.  Deterministic pivoting algorithms for constrained ranking and clustering problems , 2007, SODA '07.

[13]  Edith Hemaspaandra,et al.  The complexity of Kemeny elections , 2005, Theor. Comput. Sci..

[14]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[15]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[16]  Nadja Betzler,et al.  Towards a dichotomy for the Possible Winner problem in elections based on scoring rules , 2009, J. Comput. Syst. Sci..

[17]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Rolf Niedermeier,et al.  Fixed-parameter algorithms for Kemeny rankings , 2009, Theor. Comput. Sci..

[20]  Javed A. Aslam,et al.  Models for metasearch , 2001, SIGIR '01.

[21]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[22]  Lane A. Hemaspaandra,et al.  SIGACT news complexity theory comun 37 , 2002, SIGA.

[23]  Imrich Vrto,et al.  One Sided Crossing Minimization Is NP-Hard for Sparse Graphs , 2001, GD.

[24]  Franz-Josef Brandenburg,et al.  Comparing and Aggregating Partial Orders with Kendall tau Distances , 2012, Discret. Math. Algorithms Appl..

[25]  Vincent Conitzer,et al.  Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders , 2008, AAAI.

[26]  Xiaotie Deng,et al.  On the complexity of crossings in permutations , 2009, Discret. Math..

[27]  Nir Ailon,et al.  Aggregation of Partial Rankings, p-Ratings and Top-m Lists , 2007, SODA '07.

[28]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[29]  Fedor V. Fomin,et al.  Kernels for feedback arc set in tournaments , 2011, J. Comput. Syst. Sci..

[30]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[31]  Ronald Fagin,et al.  Comparing Partial Rankings , 2006, SIAM J. Discret. Math..

[32]  W. Knight A Computer Method for Calculating Kendall's Tau with Ungrouped Data , 1966 .

[33]  Franz-Josef Brandenburg,et al.  The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders , 2013, J. Comb. Optim..

[34]  Vladik Kreinovich,et al.  On how to merge sorted lists coming from different web search tools , 1999, Soft Comput..

[35]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[36]  Umberto Straccia,et al.  Web metasearch: rank vs. score based rank aggregation methods , 2003, SAC '03.

[37]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.