A hybrid immersed boundary method for dense particle-laden flows

[1]  Boyce E. Griffith,et al.  A one-sided direct forcing immersed boundary method using moving least squares , 2021, J. Comput. Phys..

[2]  S. Balachandar,et al.  An analysis of the spatio-temporal resolution of the immersed boundary method with direct forcing , 2021, J. Comput. Phys..

[3]  C. Meneveau,et al.  A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing , 2020, Physics of fluids.

[4]  Lian-Ping Wang,et al.  Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement. , 2020, Physical review. E.

[5]  A. Dixon,et al.  Computational Fluid Dynamics for Fixed Bed Reactor Design. , 2020, Annual review of chemical and biomolecular engineering.

[6]  Fabien Evrard,et al.  Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds , 2020, J. Comput. Phys..

[7]  Ke Sun,et al.  Is Lagrangian weight crucial in the direct forcing immersed boundary method? , 2019, Journal of Physics: Conference Series.

[8]  L. Brandt,et al.  Interface-resolved simulations of small inertial particles in turbulent channel flow , 2019, Journal of Fluid Mechanics.

[9]  Mohd Hazmil Abdol-Azis,et al.  An immersed boundary method for incompressible flows in complex domains , 2019, J. Comput. Phys..

[10]  P. Fede,et al.  Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows , 2019, Computers & Fluids.

[11]  Fabian Denner,et al.  Unified formulation of the momentum-weighted interpolation for collocated variable arrangements , 2018, J. Comput. Phys..

[12]  Fabien Evrard,et al.  An immersed boundary method for flows with dense particle suspensions , 2018, Acta Mechanica.

[13]  B. van Wachem,et al.  An immersed boundary method for flows with dense particle suspensions , 2018, Acta Mechanica.

[14]  Giuseppe Pascazio,et al.  A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness , 2016, J. Comput. Phys..

[15]  M. Uhlmann,et al.  Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity , 2015, 1511.02638.

[16]  Xiaosong Sun,et al.  Three-dimensional simulation of gas–solid–liquid flows using the DEM–VOF method , 2015 .

[17]  Charles S. Peskin,et al.  A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance , 2015, J. Comput. Phys..

[18]  J. Kuipers,et al.  A New Drag Correlation from Fully Resolved Simulations of Flow Past Monodisperse Static Arrays of Spheres , 2015 .

[19]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[20]  Wim-Paul Breugem,et al.  A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows , 2012, J. Comput. Phys..

[21]  M. Zastawny,et al.  Derivation of drag and lift force and torque coefficients for non-spherical particles in flows , 2012 .

[22]  Chunning Ji,et al.  A novel iterative direct-forcing immersed boundary method and its finite volume applications , 2012, J. Comput. Phys..

[23]  S. Tenneti,et al.  Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres , 2011 .

[24]  Alfredo Pinelli,et al.  Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers , 2010, J. Comput. Phys..

[25]  Elias Balaras,et al.  A moving-least-squares reconstruction for embedded-boundary formulations , 2009, J. Comput. Phys..

[26]  P. Fischer,et al.  Forces on a finite-sized particle located close to a wall in a linear shear flow , 2009 .

[27]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[28]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[29]  E. Balaras,et al.  A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids , 2003 .

[30]  Yoshimichi Hagiwara,et al.  Turbulence modification by the clusters of settling particles in turbulent water flow in a horizontal duct , 2002 .

[31]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[32]  Sankaran Sundaresan,et al.  Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges , 2000 .

[33]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[34]  K. Salkauskas,et al.  Moving least-squares are Backus-Gilbert optimal , 1989 .

[35]  M. D. Salas,et al.  Euler calculations for multielement airfoils using Cartesian grids , 1986 .

[36]  George M. Homsy,et al.  Stokes flow through periodic arrays of spheres , 1982, Journal of Fluid Mechanics.

[37]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[38]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[39]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[40]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[41]  H. Brenner The slow motion of a sphere through a viscous fluid towards a plane surface , 1961 .

[42]  Jianren Fan,et al.  An improved direct-forcing immersed boundary method with inward retraction of Lagrangian points for simulation of particle-laden flows , 2019, J. Comput. Phys..

[43]  G. Iaccarino,et al.  RANS solvers with adaptive structured boundary non-conforming grids , 2002 .

[44]  S. Ergun Fluid flow through packed columns , 1952 .