Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons

Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fibre pumped by a continuous wave 'holding' laser beam. The cavity solitons are trapped into specific time slots through a phase modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.

[1]  P. Genevet,et al.  Positioning cavity solitons with a phase mask , 2006 .

[2]  Robert W. Boyd,et al.  Applications of Slow Light in Telecommunications , 2006 .

[3]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[4]  P. Genevet,et al.  Microresonator defects as sources of drifting cavity solitons. , 2009, Physical review letters.

[5]  L. Lugiato Introduction to the feature section on cavity solitons: An overview , 2003 .

[6]  Marc Haelterman,et al.  Dissipative modulation instability in a nonlinear dispersive ring cavity , 1992 .

[7]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[8]  C. Denz,et al.  Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment. , 2008, Physical review letters.

[9]  P. Genevet,et al.  All-Optical Delay Line Using Semiconductor Cavity Solitons , 2007 .

[10]  C. Denz,et al.  Dynamic and static position control of optical feedback solitons. , 2007, Chaos.

[11]  U. Leonhardt,et al.  Hawking spectrum for a fiber-optical analog of the event horizon , 2016, 1601.06816.

[12]  C. D. de Sterke,et al.  Optical push broom. , 1992, Optics letters.

[13]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[14]  William J. Firth,et al.  Cavity and Feedback Solitons , 2002 .

[15]  Luc Thévenaz,et al.  Slow and fast light in optical fibres , 2008 .

[16]  Giovanna Tissoni,et al.  Mapping local defects of extended media using localized structures , 2008 .

[17]  Brambilla,et al.  Cavity solitons in semiconductor microresonators: existence, stability, and dynamical properties , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Andrey V. Gorbach,et al.  Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres , 2007 .

[19]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[20]  J. Rothenberg Intrafiber visible pulse compression by cross-phase modulation in a birefringent optical fiber. , 1990, Optics letters.

[21]  S Wabnitz,et al.  Suppression of interactions in a phase-locked soliton optical memory. , 1993, Optics letters.

[22]  Nikolay N. Rosanov,et al.  Diffractive autosolitons in nonlinear interferometers , 1990 .

[23]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[24]  C. Martijn de Sterke,et al.  Dispersionless slow light using gap solitons , 2006 .

[25]  Lene Vestergaard Hau Optical information processing in Bose–Einstein condensates , 2008 .

[26]  Norihiko Nishizawa,et al.  Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength. , 2003, Optics express.

[27]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[28]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[29]  Kestutis Staliunas,et al.  Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator , 1997 .

[30]  Yiqing Xu,et al.  Nonlinear optics of fibre event horizons , 2014, Nature Communications.

[31]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  D. Grier A revolution in optical manipulation , 2003, Nature.

[33]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[34]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[35]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[36]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[37]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[38]  A. Schweinsberg,et al.  Tunable all-optical delays via Brillouin slow light in an optical fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[39]  S. Coen,et al.  Observation of dispersive-wave emission by temporal cavity solitons , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[40]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[41]  Firth,et al.  Optical bullet holes: Robust controllable localized states of a nonlinear cavity. , 1996, Physical review letters.

[42]  W. Firth Theory of Cavity Solitons , 2001 .

[43]  Lorenzo Spinelli,et al.  SPATIAL SOLITONS IN SEMICONDUCTOR MICROCAVITIES , 1998 .

[44]  W. Firth Temporal cavity solitons: Buffering optical data , 2010 .

[45]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .