The geometry and electronic topology of higher-order charged Möbius annulenes.

Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C(12)H(12)(2+), C(12)H(12)(2-), C(14)H(14), C(18)H(18)(2+), C(18)H(18)(2-), C(21)H(21)(+), C(24)H(24)(2-), C(28)H(28)(2+), and C(28)H(28)(2-)) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Möbius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF(pi)) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L(k) = 1, 3pi) and a torus link for those with an even linking number (L(k) = 2, 4pi). The torus topology is shown to map onto single canonical pi-MOs only for even values of L(k). Incomplete and misleading descriptions of the topology of pi-electronic Möbius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.

[1]  H. Rzepa,et al.  Möbius aromatic forms of 8-π electron heteropinesElectronic supplementary information (ESI) available: all coordinates as MDL Molfiles, together with 3D models of the orbitals expressed as 3DMF files. Diagrams are also available in SVG (high resolution) format. See http://www.rsc.org/suppdata/p2/b1/ , 2002 .

[2]  P. Schleyer,et al.  Monocyclic (CH)9+ -A Heilbronner Möbius Aromatic System Revealed. , 1998, Angewandte Chemie.

[3]  P. Schleyer,et al.  Magnetic Properties of Aromatic Transition States: The Diels–Alder Reactions , 1994 .

[4]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[5]  E. Yakali,et al.  Generation and thermal bond relocation of the cyclononatetraenyl cation , 1972 .

[6]  H. Rzepa,et al.  Hückel and Möbius aromaticity and trimerous transition state behaviour in the pericyclic reactions of [10], [14], [16] and [18]annulenes , 2000 .

[7]  C. Näther,et al.  Synthesis and properties of the first Möbius annulenes. , 2006, Chemistry.

[8]  P. Schleyer,et al.  A detailed theoretical analysis of the 1,7-sigmatropic hydrogen shift : the Möbius character of the eight-electron transition structure , 1993 .

[9]  N. Aratani,et al.  meso-Trifluoromethyl-substituted expanded porphyrins. , 2006, Chemistry.

[10]  G. Călugăreanu Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .

[11]  E. Yakali,et al.  Photochemical behavior of the stereoisomeric 9-chloro-cis-bicyclo[6.1.0]nona-2,4,6-trienes. Synthesis of 9-chloro-cis,cis,cis,cis-1,3,5,7-cyclononatetraene , 1971 .

[12]  K. Muellen Reduction and oxidation of annulenes , 1984 .

[13]  H. Schaefer,et al.  Predicting molecules--more realism, please! , 2008, Angewandte Chemie.

[14]  P. Schleyer,et al.  Thermal bicyclo[6.1.0]nonatrienyl chloride-dihydroindenyl chloride rearrangement , 1971 .

[15]  V. Anand,et al.  pi-Conjugated macrocycles from thiophenes and benzenes. , 2008, Chemical communications.

[16]  Ryan Pemberton,et al.  Möbius aromaticity in [12]annulene: cis-trans isomerization via twist-coupled bond shifting. , 2005, Journal of the American Chemical Society.

[17]  J. F. M. Oth,et al.  Conformational mobility and fast bond shift in the annulenes , 1971 .

[18]  T. Crawford,et al.  Conformations of [10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory , 1999 .

[19]  P. Fuentealba,et al.  Sigma-pi separation of the electron localization function and aromaticity. , 2004, The Journal of chemical physics.

[20]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[21]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[22]  P. Schleyer,et al.  Investigation of a putative mobius aromatic hydrocarbon. The effect of benzannelation on mobius [4n]annulene aromaticity. , 2005, Journal of the American Chemical Society.

[23]  H. Rzepa Möbius aromaticity and delocalization. , 2005, Chemical reviews.

[24]  J. Aihara,et al.  Macrocyclic aromaticity in Hückel and Möbius conformers of porphyrinoids. , 2009, Organic & biomolecular chemistry.

[25]  Henry S Rzepa,et al.  Aromaticity rules for cycles with arbitrary numbers of half-twists. , 2006, Physical chemistry chemical physics : PCCP.

[26]  R. Herges,et al.  Synthesis of a Möbius aromatic hydrocarbon , 2003, Nature.

[27]  C. Hong,et al.  A chiral pentadecanuclear metallamacrocycle with a sextuple twisted Möbius topology. , 2007, Journal of the American Chemical Society.

[28]  H. Rzepa,et al.  Chiral aromaticities. AIM and ELF critical point and NICS magnetic analyses of Mobius-type aromaticity and homoaromaticity in lemniscular annulenes and hexaphyrins. , 2008, The Journal of organic chemistry.

[29]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[30]  C. C. Chiang,et al.  Crystal and molecular structure of [14]annulene , 1972 .

[31]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[32]  H. Rzepa Double-twist Möbius aromaticity in a 4n+ 2 electron electrocyclic reaction. , 2005, Chemical communications.

[33]  M. Stępień,et al.  Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. , 2007, Angewandte Chemie.

[34]  P. Fowler,et al.  Geometric localisation in Möbius π systems , 2006 .

[35]  Henry S. Rzepa,et al.  SPECTRa: The Deposition and Validation of Primary Chemistry Research Data in Digital Repositories , 2008, J. Chem. Inf. Model..

[36]  Jong Kang Park,et al.  Möbius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. , 2008, Journal of the American Chemical Society.

[37]  Henry S Rzepa,et al.  Wormholes in chemical space connecting torus knot and torus link pi-electron density topologies. , 2009, Physical chemistry chemical physics : PCCP.

[38]  P. Schleyer,et al.  Recommendations for the evaluation of aromatic stabilization energies. , 2002, Organic letters.

[39]  D. Rabenstein,et al.  Geometry of [10]annulenes , 1971 .

[40]  Henry S. Rzepa,et al.  Twist localisation in single, double and triple twisted Möbius cyclacenes , 2000 .

[41]  H. Rzepa A double-twist Möbius-aromatic conformation of [14]annulene. , 2005, Organic letters.

[42]  P. Schleyer,et al.  GROUND-STATE SUBSTITUENT EFFECTS. I. DEUTERIUM AND METHYL. , 1971 .

[43]  J. Overgaard,et al.  The magnetic möbius strip: synthesis, structure, and magnetic studies of odd-numbered antiferromagnetically coupled wheels. , 2004, Angewandte Chemie.

[44]  M. Mauksch,et al.  A preferred disrotatory 4n electron Möbius aromatic transition state for a thermal electrocyclic reaction. , 2009, Angewandte Chemie.

[45]  Jong Min Lim,et al.  Facile formation of a benzopyrane-fused [28]hexaphyrin that exhibits distinct Möbius aromaticity. , 2009, Journal of the American Chemical Society.

[46]  A. Lane,et al.  A Very Stable Cyclic DNA Miniduplex with Just Two Base Pairs , 2008, Chembiochem : a European journal of chemical biology.

[47]  H. Rzepa,et al.  Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. , 2008, Journal of the American Chemical Society.

[48]  C. Che,et al.  Self-assembly of a highly stable, topologically interesting metallamacrocycle by bridging gold (I) ions with pyridyl-2,6-diphenyl 2- and diphosphanes. , 2006, Angewandte Chemie.

[49]  Ryan Pemberton,et al.  [10]Annulene: bond shifting and conformational mechanisms for automerization. , 2006, The Journal of organic chemistry.

[50]  Z. Ciunik,et al.  Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. , 2008, Journal of the American Chemical Society.

[51]  Ryan Pemberton,et al.  Dynamic processes in [16]annulene: Möbius bond-shifting routes to configuration change. , 2006, Journal of the American Chemical Society.

[52]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[53]  P. Schleyer,et al.  In-Plane Aromaticity in 1,3-Dipolar Cycloadditions. Solvent Effects, Selectivity, and Nucleus-Independent Chemical Shifts , 1999 .

[54]  H. Rzepa Linking number analysis of a pentadecanuclear metallamacrocycle: a Möbius-Craig system revealed. , 2008, Inorganic chemistry.

[55]  H. Rzepa Lemniscular hexaphyrins as examples of aromatic and antiaromatic double-twist Möbius molecules. , 2008, Organic letters.

[56]  H. Schaefer,et al.  Aromaticity: the alternating C--C bond length structures of [14]-, [18]-, and [22]annulene. , 2004, Angewandte Chemie.

[57]  David M. Walba,et al.  Total synthesis of the first molecular Moebius strip , 1982 .

[58]  C. Isborn,et al.  Aromaticity with a twist: Möbius [4n]annulenes. , 2002, Organic letters.

[59]  Howard E. Zimmerman,et al.  On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions. I , 1966 .

[60]  P. Schleyer,et al.  How Aromatic Are Large (4n + 2)π Annulenes? , 2003 .

[61]  H. Zimmerman Moebius-Hueckel concept in organic chemistry. Application of organic molecules and reactions , 1971 .

[62]  M. Drew,et al.  Linking number analysis of a self-assembled lemniscular Möbius-metallamacrocycle , 2008 .

[63]  Nikola Sanderson,et al.  Aromaticity on the edge of chaos: an Ab initio CCSD(T) study of the bimodal balance between aromatic and non-aromatic structures for 10-π-diheterocins and heteronins , 2005 .

[64]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[65]  D. Craig 202. Delocalization in pπ–dπ bonds , 1959 .

[66]  S. Masamune,et al.  [10]Annulenes and other (CH)10 hydrocarbons , 1972 .

[67]  M. Mauksch,et al.  Neutral Möbius Aromatics: Derivatives of the Pyrrole Congener Aza[11]annulene as Promising Synthetic Targets† , 2008 .

[68]  L. J. Schaad,et al.  On the stability of large [4n]annulenes. , 2003, Organic letters.

[69]  D. Craig,et al.  A Novel Type of Aromaticity , 1958, Nature.

[70]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Miquel Solà,et al.  Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. , 2005, Chemical reviews.