Free-carrier contribution to all-optical switching in Mie-resonant hydrogenated amorphous silicon nanodisks

Conventionally, all-optical switching devices made out from bulk silicon and other semiconductors are limited by free-carrier relaxation time which spans from picoseconds to microseconds. In this work, we discuss the possibility to suppress the undesired long free-carrier relaxation in subwavelength dielectric nanostructures exhibiting localized magnetic Mie resonances. Numerical calculations show the unsymmetrical modification of the transmittance spectra of the nanodisks due the free carriers photo-injection. Such a spectral dependance allows to control temporal response of the nanostructure by varying the laser pulse spectum.

[1]  M. Notomi,et al.  Carrier Diffusion and Recombination in Photonic Crystal Nanocavity Optical Switches , 2008, Journal of Lightwave Technology.

[2]  Goldman,et al.  Ultrafast dynamics of laser-excited electron distributions in silicon. , 1993, Physical review letters.

[3]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[4]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[5]  Michal Lipson,et al.  Ultrafast all-optical modulation on a silicon chip. , 2005, Optics letters.

[6]  S. Wagner,et al.  Free‐carrier and temperature effects in amorphous silicon thin films , 1988 .

[7]  A. Othonos Probing ultrafast carrier and phonon dynamics in semiconductors , 1998 .

[8]  Wang,et al.  Ultrafast recombination and trapping in amorphous silicon. , 1990, Physical review. B, Condensed matter.

[9]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[10]  Boris N. Chichkov,et al.  Nonradiating anapole modes in dielectric nanoparticles , 2015, Nature Communications.

[11]  Lionel C. Kimerling,et al.  On-chip interconnection beyond semiconductor roadmap: silicon microphotonics , 2002, SPIE ITCom.

[12]  P. Fauchet,et al.  Ultrafast carrier relaxation in hydrogenated amorphous silicon , 1989 .

[13]  Klaus Sokolowski-Tinten,et al.  Generation of dense electron-hole plasmas in silicon , 2000 .

[14]  P. Belov,et al.  Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma. , 2015, Nano letters.

[15]  A. Mikhailovsky,et al.  Widely Tunable Infrared Antennas Using Free Carrier Refraction. , 2015, Nano letters.

[16]  Yuri S. Kivshar,et al.  Nonlinear Interference and Tailorable Third-Harmonic Generation from Dielectric Oligomers , 2015 .

[17]  Qianfan Xu,et al.  All-optical logic based on silicon micro-ring resonators. , 2007, Optics express.

[18]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[19]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[20]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[21]  B. Lukyanchuk,et al.  Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index , 2014, 1412.2861.

[22]  Masaya Notomi,et al.  On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities , 2008 .