Unexpected Ca2+-binding properties of synaptotagmin 9.

Synaptotagmin 1 (Syt 1) functions as an essential Ca2+ sensor for the fast but not slow component of Ca2+-triggered exocytosis. One hypothesis to account for this selective function, based on the close homology of Syt 1 with synaptotagmin 9 (Syt 9), is that these Syts are redundant for the slow but not the fast component of release. We now show, however, that Syt 9 has unique properties that set it apart from Syt 1. Different from Syt 1, endogenous Syt 9 does not associate Ca2+ dependently or independently with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) protein complexes, and the Syt 9 C2B domain does not form Ca2+/phospholipid complexes, whereas such complexes are essential for Syt 1 function. Nevertheless, the C2A domain of Syt 9 functions as a Ca2+-binding module, suggesting that Syts 1 and 9 are Ca2+ sensors with similar Ca2+-binding sequences but distinct properties that indicate nonoverlapping functions.

[1]  T. Südhof,et al.  Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+ , 2003, The Journal of general physiology.

[2]  E. Chapman,et al.  Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells , 2003, The Journal of cell biology.

[3]  J. Littleton,et al.  Is synaptotagmin the calcium sensor? , 2003, Current Opinion in Neurobiology.

[4]  Y. Goda,et al.  Synaptotagmin in Ca2+-Dependent Exocytosis Dynamic Action in a Flash , 2003, Neuron.

[5]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[6]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[7]  G. Davis,et al.  Transgenically Encoded Protein Photoinactivation (FlAsH-FALI) Acute Inactivation of Synaptotagmin I , 2002, Neuron.

[8]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[9]  T. Südhof,et al.  Localization Versus Function of Rab3 Proteins , 2002, The Journal of Biological Chemistry.

[10]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[11]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[12]  T. Südhof Synaptotagmins: Why So Many?* , 2002, The Journal of Biological Chemistry.

[13]  K. Mikoshiba,et al.  Synaptotagmin IX Regulates Ca2+-dependent Secretion in PC12 Cells* , 2002, The Journal of Biological Chemistry.

[14]  T. Südhof,et al.  Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities , 2002, The EMBO journal.

[15]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[16]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Südhof,et al.  Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis , 2001, Neuron.

[18]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[19]  Richard G. W. Anderson,et al.  Synaptotagmin Regulation of Coated Pit Assembly* , 2000, The Journal of Biological Chemistry.

[20]  T. Südhof,et al.  Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. , 2000, Biochemistry.

[21]  V. A. Klenchin,et al.  Large dense-core vesicle exocytosis in PC12 cells. , 1998, Methods.

[22]  T. Südhof,et al.  Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2‐domain? , 1998, The EMBO journal.

[23]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[24]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[25]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[27]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[28]  A. Ogura,et al.  Neurotransmitter Release from Synaptotagmin-Deficient Clonal Variants of PC 12 Cells , 1992, Science.

[29]  T. Südhof,et al.  Synaptotagmin II. A novel differentially distributed form of synaptotagmin. , 1991, The Journal of biological chemistry.

[30]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[31]  L. Reichardt,et al.  Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue , 1981, The Journal of cell biology.

[32]  J. Simpson THE RELEASE OF NEURAL TRANSMITTER SUBSTANCES , 1969 .

[33]  B. Katz The release of neural transmitter substances , 1969 .