Amorphous oxide channel TFTs

Abstract Thin film transistors (TFTs) using amorphous oxides of post-transition metals: indium, gallium, and zinc for the channel materials are fabricated with radio-frequency magnetron sputtering methods for the deposition of the channel and the gate insulator layers, at room temperature with no high-temperature post-deposition annealing process. The TFTs operate as n -channel field-effect transistors with various structures of top/bottom gate and top/bottom source-and-drain contact including the inverse-stagger types, and with various materials for the gate insulators, the electrodes, and the substrates. The TFTs having smoother channel interfaces show the better performance at the saturation mobility beyond 10 cm 2 V − 1 s − 1 and the on-to-off current ratio over 10 8 than the rough channel interfaces. The ring oscillator circuits operate with five-stage inverters of the top-gate TFTs or the inverse-stagger TFTs. Organic light-emission diode cells are driven by a simple circuit of the TFTs. It is also found by a combinatorial approach to the material exploration that the TFT characteristics can be controlled by the composition ratio of the metals in the channel layers. The amorphous oxide channel TFTs fabricated with sputtering deposition at low temperature could be a candidate for key devices of large-area flexible electronics.

[1]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[2]  H. S. Bae,et al.  Ultraviolet detecting properties of ZnO-based thin film transistors , 2004 .

[3]  Randy Hoffman,et al.  High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer , 2005 .

[4]  Pedro Barquinha,et al.  Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide , 2006 .

[5]  Pedro Barquinha,et al.  Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide , 2006 .

[6]  Y. Shan,et al.  Transparent amorphous conductive Cd–In–Sb–O thin films for flexible devices , 2006 .

[7]  E. Fortunato,et al.  Recent advances in ZnO transparent thin film transistors , 2005 .

[8]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[9]  Pedro Barquinha,et al.  Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature , 2004 .

[10]  E. Fortunato,et al.  Transparent thin film transistors based on indium oxide semiconductor , 2006 .

[11]  Yasutaka Takahashi,et al.  Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition , 2001 .

[12]  R. McLean,et al.  Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering , 2003 .

[13]  Paul Wickboldt,et al.  Polysilicon thin film transistors fabricated on low temperature plastic substrates , 1999 .

[14]  Douglas A. Keszler,et al.  Spin-coated zinc oxide transparent transistors , 2003 .

[15]  R. Hoffman ZnO-channel thin-film transistors: Channel mobility , 2004 .

[16]  Elvira Fortunato,et al.  High field-effect mobility zinc oxide thin film transistors produced at room temperature , 2004 .

[17]  Randy Hoffman,et al.  Transparent ring oscillator based on indium gallium oxide thin-film transistors , 2006 .

[18]  Randy Hoffman,et al.  High-performance flexible zinc tin oxide field-effect transistors , 2005 .

[19]  Masashi Kawasaki,et al.  High Mobility Thin Film Transistors with Transparent ZnO Channels , 2003 .

[20]  Gregory N. Parsons,et al.  Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates , 2000 .

[21]  H. Ohta,et al.  Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors , 2006 .

[22]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[23]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[24]  R. Street Thin‐Film Transistors , 2009 .

[25]  H. Ohno,et al.  Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors , 2004 .

[26]  Douglas A. Keszler,et al.  Tin oxide transparent thin-film transistors , 2004 .

[27]  Hua-Chi Cheng,et al.  Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method , 2006 .

[28]  Arokia Nathan,et al.  120 °C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates , 2000 .

[29]  H. Ohno,et al.  Modeling and simulation of polycrystalline ZnO thin-film transistors , 2003 .

[30]  Randy Hoffman,et al.  Transparent thin-film transistors with zinc indium oxide channel layer , 2005 .

[31]  E. Fortunato,et al.  Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices , 2005 .

[32]  T. Riedl,et al.  Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes , 2006 .