The Band Structure of Silver and Optical Interband Transitions

The band structure of silver has been calculated using the relativistic augmented plane wave method. Relativistic effects must be included if a quantitative interpretation of optical experiments is made. The L′2 → L1 gap is 1 eV smaller in the relativistic calculation than it is in a non-relativistic band structure obtained from the same potential. This reduction of the L-gap is in the present case sufficient to lead to an extra interband edge below the main edge at 3.98 eV. The optical function e2(ω) and the energy distributions of photoemitted electrons have been calculated.

[1]  N. Christensen Primary Photoemission Spectra of Gold and Their Relation to the Band Structure , 1972 .

[2]  J. Janak,et al.  One-Electron Analysis of Optical Data in Copper , 1972 .

[3]  B. Cooper,et al.  Determination of Electron Energy Bands by Phase-Shift Parametrization: Application to Silver , 1971 .

[4]  N. Christensen Anisotropy of the electron-phonon interaction in gold , 1971 .

[5]  N. V. Smith,et al.  Photoelectron Energy Spectra and the Band Structures of the Noble Metals , 1971 .

[6]  J. Dimmock The Calculation of Electronic Energy Bands by the Augmented Plane Wave Method , 1971 .

[7]  A. Mathewson,et al.  The optical properties of silver in the energy range 3.2-4.3 eV as a function of temperature , 1970 .

[8]  N. Christensen,et al.  Relativistic Band Calculation and the Optical Properties of Gold , 1970 .

[9]  P. Nilsson,et al.  Piezooptical properties of Ag and AgAu alloys , 1970 .

[10]  A. Switendick,et al.  Fermi-Surface Parameters and Band-Structures for the Noble Metals. I. Normal-Volume Results and Herman-Skillman Potentials , 1970 .

[11]  Helmut Kanter,et al.  Slow-Electron Mean Free Paths in Aluminum, Silver, and Gold , 1970 .

[12]  M. R. Halse The Fermi surfaces of the noble metals , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  S. Bhatnagar Energy Bands for Silver by the Augmented-Plane-Wave Method , 1969 .

[14]  J. Daniels Bestimmung von optischen Konstanten an Palladium und Silber aus Energieverlustmessungen im Energiebereich von 2 bis 90 eV , 1969 .

[15]  N. Christensen An APW Calculation for Silver , 1969 .

[16]  E. Snow Self-Consistent Energy Bands of Silver by an Augmented-Plane-Wave Method , 1968 .

[17]  M. Rho MIGDAL'S THEORY OF NUCLEAR STRUCTURE AND PARTIAL MUON CAPTURE RATES IN $sup 16$O. , 1967 .

[18]  W. Engeler,et al.  Piezoreflectivity of the Noble Metals , 1966 .

[19]  L. J. Raubenheimer,et al.  Accurate Numerical Method for Calculating Frequency-Distribution Functions in Solids , 1966 .

[20]  C. N. Berglund,et al.  Photoemission Studies of Copper and Silver: Theory , 1964 .

[21]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[22]  John J. Quinn,et al.  Range of Excited Electrons in Metals , 1962 .