Effects of pairing, continuum, and deformation on particles in the classically forbidden regions for Mg isotopes

Particles in the classically forbidden regions are studied based on the deformed relativistic Hartree-Bogoliubov theory in continuum with PC-PK1 for magnesium isotopes. By analyzing the neutron and proton radii, it is found that the largest deviations from the empirical values appear at the predicted neutron halo nuclei $^{42}$Mg and $^{44}$Mg. Consistently, notable increases at $^{42}$Mg and $^{44}$Mg are found in the total number of neutrons in the classically forbidden regions that includes the number of neutrons in continuum. It is shown that the deformation effect, in general, increases the number of particles in the classically forbidden regions below the continuum threshold. The most deeply bound single-particle states play the dominant roles in the increase caused by deformation.

[1]  Philip D. Plowright Front , 2019, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[2]  J. Meng,et al.  Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice , 2018, Science China Physics, Mechanics & Astronomy.

[3]  R. Chatterjee,et al.  Breakup reactions of light and medium mass neutron drip line nuclei , 2018, Progress in Particle and Nuclear Physics.

[4]  J. Meng,et al.  Nuclear magnetic moments in covariant density functional theory , 2018, Frontiers of Physics.

[5]  Shan-Gui Zhou,et al.  Shrunk halo and quenched shell gap at N = 16 in 22C: Inversion of sd states and deformation effects , 2018, Physics Letters B.

[6]  Yakun Wang Magnetic rotations in Pb198 and Pb199 within covariant density functional theory with pairing correlations , 2018, Physical Review C.

[7]  Yakun Wang Yrast band of 109 Ag described by tilted axis cranking covariant density functional theory with a separable pairing force , 2017, 1708.06117.

[8]  H. Liang,et al.  The limits of the nuclear landscape explored by the relativistic continuum Hatree-Bogoliubov theory , 2017, 1704.08906.

[9]  J. Meng,et al.  Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods , 2016, 1612.09429.

[10]  J. Meng Relativistic Density Functional for Nuclear Structure , 2016 .

[11]  J. Meng,et al.  Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum , 2015, 1507.01079.

[12]  Haozhao Liang,et al.  Hidden pseudospin and spin symmetries and their origins in atomic nuclei , 2014, 1411.6774.

[13]  J. Yao,et al.  Global dynamical correlation energies in covariant density functional theory: Cranking approximation , 2013, 1305.1736.

[14]  Balraj Singh,et al.  Tables of E2 transition probabilities from the first 2+ states in even–even nuclei , 2013, 1312.5975.

[15]  S. Takeuchi,et al.  Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca , 2013, Nature.

[16]  A. Zilges,et al.  Experimental studies of the Pygmy Dipole Resonance , 2013 .

[17]  J. Meng,et al.  Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation , 2013, 1301.1808.

[18]  I. Tanihata,et al.  Recent experimental progress in nuclear halo structure studies , 2013 .

[19]  J. Meng,et al.  Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa , 2012, 1210.5010.

[20]  J. Meng,et al.  Density-dependent deformed relativistic Hartree-Bogoliubov theory in continuum , 2012, 1204.5272.

[21]  P. Ring,et al.  Deformed relativistic Hartree-Bogoliubov theory in continuum , 2012, 1202.0070.

[22]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[23]  H. Liang,et al.  Antimagnetic rotation band in nuclei: a microscopic description. , 2011, Physical review letters.

[24]  P. Ring,et al.  Relativistic nuclear energy density functionals: Mean-field and beyond , 2011, 1102.4193.

[25]  G. Alkhazov,et al.  NUCLEAR RADII OF UNSTABLE NUCLEI , 2011, 1101.4717.

[26]  H. Liang,et al.  Novel structure for magnetic rotation bands in 60Ni , 2011, 1101.4547.

[27]  P. Ring,et al.  Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction , 2011 .

[28]  A. Arima A short history of nuclear magnetic moments and GT transitions , 2011 .

[29]  J. Yao,et al.  One-Pion Exchange Current Corrections for Nuclear Magnetic Moments in Relativistic Mean Field Theory , 2010, 1002.0107.

[30]  Youjin Yuan,et al.  Progress in HIRFL-CSR , 2010 .

[31]  S. Gales SPIRAL2 at GANIL: Next Generation of ISOL Facility for Intense Secondary Radioactive Ion Beams , 2010 .

[32]  M. Thoennessen,et al.  Plans for the Facility for Rare Isotope Beams , 2010 .

[33]  J. Yao,et al.  New parametrization for the nuclear covariant energy density functional with a point-coupling interaction , 2010, 1002.1789.

[34]  P. Ring,et al.  Neutron halo in deformed nuclei , 2009, 0909.1600.

[35]  M. Porquet,et al.  Nuclear magic numbers: New features far from stability , 2008, 0805.2561.

[36]  W. Peters,et al.  Determination of the N=16 shell closure at the oxygen drip line. , 2008, Physical review letters.

[37]  Z. Podolyák,et al.  Collapse of the N=28 shell closure in (42)Si. , 2007, Physical review letters.

[38]  J. Yao,et al.  Time-odd triaxial relativistic mean field approach for nuclear magnetic moments , 2006, nucl-th/0606040.

[39]  Y. Blumenfeld,et al.  N = 14 shell closure in 22O viewed through a neutron sensitive probe. , 2006, Physical review letters.

[40]  H. Toki,et al.  Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei , 2005, nucl-th/0508020.

[41]  M. Fallot,et al.  Evidence for pygmy and giant dipole resonances in 130Sn and 132Sn. , 2005, Physical review letters.

[42]  J. Ginocchio Relativistic symmetries in nuclei and hadrons , 2005 .

[43]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[44]  H. Toki,et al.  Magic numbers for superheavy nuclei in relativistic continuum Hartree-Bogoliubov theory , 2004, nucl-th/0403021.

[45]  J. Meng,et al.  Neutron halos in hypernuclei , 2003 .

[46]  P. Ring,et al.  Spin symmetry in the antinucleon spectrum. , 2003, Physical review letters.

[47]  P. Ring,et al.  Spherical relativistic Hartree theory in a Woods-Saxon basis , 2003, nucl-th/0303031.

[48]  Zhang Shuang-quan,et al.  Pseudospin Symmetry in Relativistic Framework with Harmonic Oscillator Potential and Woods-Saxon Potential , 2003 .

[49]  H. Toki,et al.  Giant halo at the neutron drip line in Ca isotopes in relativistic continuum Hartree-Bogoliubov theory , 2002 .

[50]  Zhang Shuang-quan,et al.  Giant Neutron Halo in Exotic Calcium Nuclei , 2002 .

[51]  I. Tanihata,et al.  Observation of new neutron and proton magic numbers , 2002 .

[52]  I. Tanihata,et al.  The relativistic continuum Hartree-Bogoliubov description of charge-changing cross section for C, N, O and F isotopes , 2001, nucl-th/0107039.

[53]  M. Jie,et al.  The Particles in Classically Forbidden Area for Exotic Nuclei in Ca Isotopes , 2000 .

[54]  P. Ring,et al.  Time-odd mean fields in the rotating frame: Microscopic nature of nuclear magnetism , 2000, nucl-th/0006034.

[55]  Suzuki,et al.  New magic number, N = 16, near the neutron drip line , 2000, Physical review letters.

[56]  Takashi S. Nakamura,et al.  Quadrupole deformation of 12Be studied by proton inelastic scattering , 2000 .

[57]  J. Meng,et al.  Particles in classically forbidden areas, neutron skin and halo, and pure neutron matter in Ca isotopes , 2000, nucl-th/0004010.

[58]  P. Ring,et al.  Cranked relativistic Hartree–Bogoliubov theory: formalism and application to the superdeformed bands in the A∼190 region , 2000, nucl-th/0001054.

[59]  J. Meng,et al.  Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line , 1999 .

[60]  P. Ring,et al.  Pseudospin symmetry in relativistic mean field theory , 1998 .

[61]  J. Meng Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application , 1998 .

[62]  I. Tanihata,et al.  The proton and neutron distributions in Na isotopes: The development of halo and shell structure , 1998 .

[63]  P. Ring,et al.  Giant Halo at the Neutron Drip Line , 1996, nucl-th/9612045.

[64]  J. Ginocchio Pseudospin as a relativistic symmetry , 1996, nucl-th/9611044.

[65]  Meng,et al.  Relativistic Hartree-Bogoliubov Description of the Neutron Halo in 11Li. , 1996, Physical review letters.

[66]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[67]  I. Tanihata Nuclear structure studies from reaction induced by radioactive nuclear beams , 1995 .

[68]  König,et al.  Identical bands in superdeformed nuclei: A relativistic description. , 1993, Physical review letters.

[69]  P. Ring,et al.  A relativistic description of rotating nuclei: The yrast line of 20Ne☆ , 1989 .

[70]  Takahashi,et al.  Measurements of interaction cross sections and nuclear radii in the light p-shell region. , 1985, Physical review letters.

[71]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .