Stochastic Methods for Image Analysis

These lectures about stochastic methods for image analysis contain three parts. The first part is about visual perception and the non-accidentalness principle. It starts with an introduction to the Gestalt theory, that is a psychophysiological theory of human visual perception. It can be translated into a mathematical framework thanks to a perception principle called the non-accidentalness principle, that roughly says that “we immediately perceive in an image what has a low probability of coming from an accidental arrangement”. The second part of these lectures is about the so-called “a contrario method” for the detection of geometric structures in images. The a contrario method is a generic method, based on the non-accidentalness principle, to detect meaningful geometric structures in images. We first show in details how it works in the case of the detection of straight segments. Then, we show some other detection problems (curves, vanishing points, etc.) The third part of these lectures is about stochastic models of images for the problem of modeling and synthesizing texture images. It gives an overview of some methods of texture synthesis. We also discuss two models of texture images: stationary Gaussian random fields and shot noise random fields.

[1]  B. Galerne,et al.  The Heeger & Bergen Pyramid Based Texture Synthesis Algorithm , 2014, Image Process. Line.

[2]  Julie Delon,et al.  A Unified Framework for Detecting Groups and Application to Shape Recognition , 2007, Journal of Mathematical Imaging and Vision.

[3]  W. Metzger Gesetze des Sehens , 1937 .

[4]  Rafael Grompone von Gioi,et al.  LSD: a Line Segment Detector , 2012, Image Process. Line.

[5]  Pascal Monasse,et al.  The Image Curvature Microscope: Accurate Curvature Computation at Subpixel Resolution , 2017, Image Process. Line.

[6]  P.E. Hart,et al.  How the Hough transform was invented [DSP History] , 2009, IEEE Signal Processing Magazine.

[7]  Lionel Moisan,et al.  A Probabilistic Criterion to Detect Rigid Point Matches Between Two Images and Estimate the Fundamental Matrix , 2004, International Journal of Computer Vision.

[8]  Yann Gousseau,et al.  Variational Texture Synthesis with Sparsity and Spectrum Constraints , 2015, Journal of Mathematical Imaging and Vision.

[9]  Yann Gousseau,et al.  The dead leaves model: a general tessellation modeling occlusion , 2006, Advances in Applied Probability.

[10]  Jean-Michel Morel,et al.  A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm , 2016, Journal of Mathematical Imaging and Vision.

[11]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .

[12]  Lionel Moisan,et al.  Edge Detection by Helmholtz Principle , 2001, Journal of Mathematical Imaging and Vision.

[13]  Agnès Desolneux,et al.  Vanishing Point Detection without Any A Priori Information , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Lionel Moisan,et al.  Meaningful Alignments , 2000, International Journal of Computer Vision.

[15]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[16]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[17]  Rafael Grompone von Gioi,et al.  LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Song-Chun Zhu,et al.  Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Neus Sabater,et al.  Meaningful Matches in Stereovision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Bruno Galerne,et al.  Micro-Texture Synthesis by Phase Randomization , 2011, Image Process. Line.

[21]  Leon A. Gatys,et al.  Texture Synthesis Using Convolutional Neural Networks , 2015, NIPS.

[22]  Rafael Grompone von Gioi,et al.  A psychophysical evaluation of the a contrario detection theory , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[23]  L. Santaló Integral geometry and geometric probability , 1976 .

[24]  Lionel Moisan,et al.  Periodic Plus Smooth Image Decomposition , 2011, Journal of Mathematical Imaging and Vision.

[25]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[26]  P. Bickel,et al.  Texture synthesis and nonparametric resampling of random fields , 2006, math/0611258.

[27]  Rafael Grompone von Gioi,et al.  Unsupervised Smooth Contour Detection , 2016, Image Process. Line.

[28]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis , 2008 .

[29]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[31]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Bruno Galerne,et al.  Random Phase Textures: Theory and Synthesis , 2011, IEEE Transactions on Image Processing.

[33]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[34]  Agnès Desolneux,et al.  Image Denoising by Statistical Area Thresholding , 2005, Journal of Mathematical Imaging and Vision.

[35]  Yann Gousseau,et al.  Exemplar-based Texture Synthesis: the Efros-Leung Algorithm , 2013, Image Process. Line.

[36]  Patrick Bouthemy,et al.  An a contrario Decision Framework for Region-Based Motion Detection , 2006, International Journal of Computer Vision.

[37]  Lionel Moisan,et al.  A compact representation of random phase and Gaussian textures , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  L. Moisan,et al.  Maximal meaningful events and applications to image analysis , 2003 .

[39]  Julien Rabin,et al.  A Statistical Approach to the Matching of Local Features , 2009, SIAM J. Imaging Sci..

[40]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[41]  Yann Gousseau,et al.  Unsupervised thresholds for shape matching , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).